MEEG 4103 Quiz 4.1.091

Rule 1: The conjugate beam and the actual beam are of the same length.

Rule 2: The **loading** on the conjugate beam is simply the distributed **elastic weight**, which is given by the bending moment *M* in the actual beam divided by the flexural rigidity *EI* of the actual beam. (The *elastic weight*, *M/EI*, points upward if the *bending moment* is positive — to cause the top fiber in compression — in beam convention.)

	Existing support condition	Corresponding support condition
	of the actual beam	for the conjugate beam
Rule 3:	Fixed end	Free end
Rule 4:	Free end	Fixed end
Rule 5:	Simple support at the end	Simple support at the end
Rule 6:	Simple support <i>not</i> at the end	Unsupported hinge
Rule 7:	Unsupported hinge	Simple support

Rule 8: The conjugate beam (hence its free body) is in static equilibrium.

Rule 9: The slope of (the centerline of) the actual beam at any cross section is given by the "shearing force" at that cross section of the conjugate beam. (This slope is positive, or counterclockwise, if the "shearing force" is positive — tending to rotate the beam element clockwise — in beam convention.)

Rule 10: The deflection of (the centerline of) the actual beam at any point is given by the "bending moment" at that point of the conjugate beam. (This deflection is upward if the "bending moment" is positive — tending to cause the top fiber in compression — in beam convention.)