MEEG 4103 Quiz 4.1b.081 A steel countershaft with roller bearings at O and B is in equilibrium as shown, where $T_1 = 9T_2$. Taking the bearings as simple supports, determine (a) the deflection y_C at C, (b) the minimum shaft diameter d_{\min} needed, using ½-in. increments, if the slope at either bearing should not exceed 0.07°, (c) the value of y_C when the shaft diameter is d_{\min} .

$$E = 30 \times 10^6 \text{ psi}$$
 $I = \frac{\pi}{4} r^4$ $T_1 = 630 \text{ lb}$ $T_2 = 70 \text{ lb}$ ①
In *FBD* ① for shaft: $\mathbf{O}_y = 655 \text{ lb} \downarrow$ ① $\mathbf{B}_y = 405 \text{ lb} \uparrow$ ①

In *FBD* for CB: ①
$$O_y^c = \frac{35\,902.5}{EI}$$
 $M_C^c = -\frac{892\,170}{EI}$

(a)
$$2r = d = 1.25$$
 in. $y_C = M_C^c$ $y_C = -0.248$ in. ①