
MEEG 4103 Quiz 5.2.081

(Open book, closed notes)

1. 5 A steel with yield strength of 50 kpsi is subjected to the plane stress state: $\sigma_x = -6$ kpsi, $\sigma_y = -14$ kpsi, $\tau_{xy} = -3$ kpsi. Compute the factor of safety n using (a) maximum-shearstress theory, (b) distortion-energy theory.

2. 5 A bar is made of AISI 1006 cold-drawn steel and is loaded as shown, where F = 1.1kN, P = 16 kN, and T =120 N·m. Compute the factor of safety n for stress elements at A and B using the distortionenergy theory.

1. Units of *stresses*: kpsi $S_v = 50$

$$S_{v} = 50$$

$$R = 5$$
, $\sigma_1 = 0$, $\sigma_2 = -5$, $\sigma_3 = -15$, $2\tau_{\text{max}} = \sigma_1 - \sigma_3 = 15$

(a) MSS: $n = S_v / (2\tau_{max})$

$$n = 3.33$$
 ②

(b) DE: $\sigma' = 13.22876$ $n = S_v / \sigma'$

$$n = S_v / \sigma'$$

$$n = 3.78$$
 ②

2. Units of *stresses*: MPa $S_v = 280 \, \bigcirc$

At A: $\sigma_x = 84.883$, $\tau_{xz} = 22.635$, $\sigma' = 93.499$ n = 2.99

$$n = 2.99$$
 ②

At B: $\sigma_x = 22.635$, $\tau_{xy} = -24.710$, $\sigma' = 48.416$ n = 5.78

$$n = 5.78$$