
MEEG 4103 Quiz 5.2b.081

1. (5) A steel with yield strength of 50 kpsi is subjected to the plane stress state: $\sigma_x = 6$ kpsi, $\sigma_y = 12$ kpsi, $\tau_{xy} = -4$ kpsi. Compute the factor of safety *n* using (*a*) maximum-shear-stress theory, (*b*) distortion-energy theory.

2. (5) A bar is made of AISI 1006 cold-drawn steel and is loaded as shown, where F = 1.5kN, P = 18 kN, and T =150 N·m. Compute the factor of safety *n* for stress elements at *A* and *B* using the distortionenergy theory.

(Open book, closed notes)

1. Units of *stresses*: kpsi
$$S_y = 50$$

 $R = 5, \ \sigma_1 = 14, \ \sigma_2 = 4, \ \sigma_3 = 0, \ 2\tau_{max} = \sigma_1 - \sigma_3 = 14$ (1)
(a) MSS: $n = S_y / (2\tau_{max})$ $n = 3.57$ (2)
(b) DE: $\sigma' = 13.22876$ $n = S_y / \sigma'$ $n = 4.00$ (2)
2. Units of *stresses*: MPa $S_y = 280$ (1)

<u>At A</u>: $\sigma_x = 110.3474$, $\tau_{xy} = 28.2942$, $\sigma' = 120.74$ n = 2.32 <u>At B</u>: $\sigma_x = 25.4648$, $\tau_{xy} = -31.1236$, $\sigma' = 59.62$ n = 4.70 2