MEEG 4703 Mathematical Methods in Engineering

 4703-001 (10139/10140) MWF (10:45 a.m. -11:35 a.m.) MEEG 217 Fall 2018Instructor: Ing-Chang Jong, Ph.D., P.E.
Professor of Mechanical Engineering

Office: MEEG 204E Phone: 575-4350
E-mail:icjong@uark.edu

Texts:

1. Index Notation \& Cartesian Tensors, seminar notes, I. C. Jong, 2006
2. Advanced Engineering Mathematics, Fifth Edition, Zill \& Wright, Jones and Bartlett Publishers, 2014

Homework Assignments

Cartesian Tensors

C1. Derive the transformation law for first-order Cartesian tensors: $A_{i}^{\prime}=a_{i j} A_{j}$
C2. Derive the transformation law for first-order Cartesian tensors: $A_{i}=a_{j i} A_{j}^{\prime}$
Using index notation, prove the following identities:
N1. $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}$
N2. $\nabla(\mathbf{A} \cdot \mathbf{B})=(\mathbf{B} \cdot \nabla) \mathbf{A}+(\mathbf{A} \cdot \nabla) \mathbf{B}+\mathbf{B} \times(\nabla \times \mathbf{A})+\mathbf{A} \times(\nabla \times \mathbf{B})$
N3. $(\mathbf{A} \times \mathbf{B}) \cdot(\mathbf{C} \times \mathbf{D})+(\mathbf{B} \times \mathbf{C}) \cdot(\mathbf{A} \times \mathbf{D})+(\mathbf{C} \times \mathbf{A}) \cdot(\mathbf{B} \times \mathbf{D})=0$
N4. $(\mathbf{A} \times \mathbf{B}) \cdot(\mathbf{B} \times \mathbf{C}) \times(\mathbf{C} \times \mathbf{A})=(\mathbf{A} \cdot \mathbf{B} \times \mathbf{C})^{2}$
N5. $A \times(B \times C)+B \times(\mathbf{C} \times \mathbf{A})+\mathbf{C} \times(\mathbf{A} \times \mathbf{B})=0$
N6. $(A \times B) \cdot(\mathbf{C} \times \mathbf{D})=(\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D})-(\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C})$
N7. $(\mathbf{A} \times \mathbf{B}) \times(\mathbf{C} \times \mathbf{D})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C} \times \mathbf{D})-\mathbf{A}(\mathbf{B} \cdot \mathbf{C} \times \mathbf{D})=\mathbf{C}(\mathbf{A} \cdot \mathbf{B} \times \mathbf{D})-\mathbf{D}(\mathbf{A} \cdot \mathbf{B} \times \mathbf{C})$
N8. $\nabla \cdot(\nabla \times \mathbf{A})=0$

General Tensors

G1. Derive the transformation law for first-order covariant tensors: $A_{i}=\frac{\partial \bar{x}^{j}}{\partial x^{i}} \bar{A}_{j}$
G2. Derive the transformation law for first-order covariant tensors: $\bar{A}_{i}=\frac{\partial x^{j}}{\partial \bar{x}^{i}} A_{j}$
G3. Derive the transformation law for first-order contravariant tensors: $A^{i}=\frac{\partial x^{i}}{\partial \bar{x}^{j}} \bar{A}^{j}$
G4. Derive the transformation law for first-order contravariant tensors: $\bar{A}^{i}=\frac{\partial \bar{x}^{i}}{\partial x^{j}} A^{j}$

Chapter 8 Matrices

p. 362 11, 18, 23, 27
p. 363 29, 42, 43
p. 375 5, $9,13,15,16,17$
p. 376 29, 30
p. $38718,27,28,30$
p. 392 23, 24
p. 393 29, 33, 38
p. 401 7, 8, 21, 22, 23, 26
p. 40249,52
p. 405 7, 10, 13
p. 4124
p. 413 7, 8,15
p. 416 2, 3, 7, 11
p. $42413,17,19,21$

M1. Determine a square root of the matrix \mathbf{A} as shown.

$$
\mathbf{A}=\left[\begin{array}{cc}
5 & -2 \\
-2 & 8
\end{array}\right]
$$

M2. Determine a square root of the matrix \mathbf{B} as shown.

$$
\mathbf{B}=\left[\begin{array}{ccc}
-12 & 11.5 & -63 \\
-21 & 9.25 & -63 \\
3 & -3.25 & 18
\end{array}\right]
$$

M3. Determine a square root of the matrix \mathbf{C} as shown.

$$
\mathbf{C}=\left[\begin{array}{ccc}
-7 & 2.5 & 33 \\
2.5 & 7.25 & -7.5 \\
-1 & 5 & 7
\end{array}\right]
$$

p. 438 1, 12
p. 439 31, 32, 33, 34, 38
p. $4493,4,8,10$
p. 457 3
p. 458 7, 8

Chapter 7 Vectors

p. $32626,27,29,34,35,47$
p. 333 49, 52

S1. Find the equation of the line which passes through the point $(5,2,3)$ and is parallel to the line of intersection of the plane containing the points $(1,1,1),(1,2,4)$, and $(-1,3,5)$ and the plane containing the points $(2,4,2),(3,-1,2)$, and $(-2,-4,3)$.
Ans. $\frac{x-5}{85}=\frac{y-2}{-33}=\frac{z-3}{-14}$

S2. Find the equation of the plane which contains the points ($-1,-1,1$), (1, -1, 2), and (2, 1, -3).
Ans. $2 x-11 y-4 z-5=0$
S3. Find the shortest distance from the point $(2,4,5)$ to the plane which contains the points $(-1,-1,1),(1,-1,2)$, and (2, 1, -3).
Ans. $65 / \sqrt{141}$ or 5.47
S4. Find the shortest distance between the line passing through the points $P(5,0,0)$ and $Q(4,8,-4)$ and the line passing through the points $R(0,0,12)$ and $S(4,7,8)$.
Ans. $448 / \sqrt{1937}$ or 10.18

Ans. $1 / \sqrt{26}$ or 0.1961
S6. Prove that the line joining the midpoints of two sides of a triangle is parallel to the third side and has one half of its magnitude.

S7. Prove that the medians of a triangle trisect themselves.
S8. Find the shortest distance from the point $(6,-4,4)$ to the line passing through the points $(2,1,2)$ and $(3,-1,4)$.
Ans. 3
S9. A force $\mathbf{F}=6 x \mathbf{j} \mathrm{~N}$ acts on a particle during its motion from $A_{1}(0,0)$ to $A_{2}(1,1) \mathrm{m}$ along the path C defined by $y=x$. Determine the work done by \mathbf{F} on the particle.
Ans. 3 J
S10. Solve Prob. $\underline{\text { S-9 }}$ if the path C is defined by $y=x(2-x)$.
Ans. 2 J

Chapter 9 Vector Calculus

p. 508 8, 10, 20, 22
p. 509

34
p. $535 \quad 1$
p. 536 7, 23, 27
p. $5421,3,5$
p. 54325,29
p. 548 1, 5
p. 549 7, 10
p. $557 \quad 9$
p. 558 13, 14
p. $5641,2,4,6$

