MEEG 4703 Quiz m2.183

1. (10) In an experiment, the following correspondence was found between temperature T (in ${ }^{\circ} \mathrm{C}$) and electrical resistance R (in $\mathrm{M} \Omega$):
$\begin{array}{lllllll}T & 400 & 450 & 500 & 550 & 600 & 650\end{array}$
R
0.47
0.90
2.0
$3.7 \quad 7.5$
15
Find the least squares line $R=a T+b$. Use this line to estimate the resistance at $T=700$.
2. (1) Identify and graph the given conic section

$$
5 x^{2}-2 x y+5 y^{2}=24
$$

1.

We have $\mathbf{Y}^{T}=\left(\begin{array}{llllll}0.47 & 0.90 & 2.0 & 3.7 & 7.5 & 15\end{array}\right) \quad$ and $\quad \mathbf{A}^{T}=\left(\begin{array}{cccccc}400 & 450 & 500 & 550 & 600 & 650 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}\right)$.

Now

$$
\mathbf{A}^{T} \mathbf{A}=\left(\begin{array}{rr}
1697500 & 3150 \\
3150 & 6
\end{array}\right) \quad \text { and } \quad\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1}=\frac{1}{262500}\left(\begin{array}{rr}
6 & -3150 \\
-3150 & 1697500
\end{array}\right)
$$

so $\mathbf{X}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{Y}=\binom{0.0538}{-23.3167}$ and the least squares line is $R=0.0538 T-23.3167$. At $T=700$, $R \approx 14.3433$.

2.

$$
\begin{aligned}
& \text { The given equation can be written as } \mathbf{X}^{T} \mathbf{A X}=24:\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{rr}
5 & -1 \\
-1 & 5
\end{array}\right)\binom{x}{y}=24 \text {. Using } \\
& \lambda_{1}=6, \quad \lambda_{2}=4, \quad \mathbf{K}_{1}=\binom{1}{-1}, \quad \mathbf{K}_{2}=\binom{1}{1}, \mathbf{P}=\left(\begin{array}{rr}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) \text { and } \mathbf{X}=\mathbf{P X}^{\prime} \text { we find } \\
& \left(\begin{array}{ll}
X & Y
\end{array}\right)\left(\begin{array}{ll}
6 & 0 \\
0 & 4
\end{array}\right)\binom{X}{Y}=24 \text { or } 6 X^{2}+4 Y^{2}=24 .
\end{aligned}
$$

The conic section is an ellipse. Now from $\mathbf{X}^{\prime}=\mathbf{P}^{T} \mathbf{X}$ we see that the $X Y$-coordinates of $(1,-1)$ and $(1,1)$ are $(\sqrt{2}, 0)$ and $(0, \sqrt{2})$, respectively. From this we conclude that the X-axis and Y-axis are as shown in the accompanying figure.

