

٨	1	F	F	G	47	O	3

Name: _____

Test II

ID#: _____

1. (20%) A third-order determinant D is shown. Making use of properties of a determinant, (a) transform the determinant into a third-order determinant whose elements below the main diagonal are zero, (b) show that D = (b-a)(c-a)(c-b).

$$D = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$$

2. (20%) Using orthogonal matrix and diagonalization, identify and graph (to scale) the conic section

$$125 x^2 + 600 x y + 720 y^2 - 156 x + 65 y = 338$$

3. (20%) In an experiment, the following correspondence was found between temperature T (in °C) and the coefficient of statics friction μ_s :

T	20	40	60	80	100
μ_s	0.22	0.20	0.18	0.17	0.15

Find the least square line $\mu_s = aT + b$. Use this line to estimate the value of μ_s for T = 120°C.

4. (20%) Using Cayley-Hamilton theorem, compute A^{11} for the matrix A shown.

$$\mathbf{A} = \begin{bmatrix} -2 & 4 \\ -1 & 3 \end{bmatrix}$$

5. (20%) The eigenvalues of the matrix **A** shown are $\lambda_1 > \lambda_2 > \lambda_3 = 2.25$. Find (a) the values of λ_1 and λ_2 , (b) the modal matrix **M**, (c) the inverse \mathbf{M}^{-1} , (d) a square root $\sqrt{\mathbf{A}}$.

$$\mathbf{A} = \begin{bmatrix} -12 & 11.5 & -63 \\ -21 & 9.25 & -63 \\ 3 & -3.25 & 18 \end{bmatrix}$$