1. A beam AD having a constant flexural rigidity EI is supported and loaded as shown in Fig. 1. Determine (a) the reaction forces A_y and C_y at A and C, (b) the slopes θ_A and θ_B at A and B, (c) the deflection y_B at B.

![Fig. 1](image1.png)

2. **A.** Describe the principle of moments. **B.** For the beam shown in Fig. 2, consider section $n-n$ and determine (a) the shearing stress τ_a at point a, (b) the shearing stress τ_b at point b.

![Fig. 2](image2.png)

3. The magnitude of tightening force in the clamp is $P = 600$ N. Knowing that point C is the centroid of section $a-a$, determine (a) the value of \bar{y}, (b) the stress σ_A at point A, (c) the stress σ_D at point D, (d) the value of e if the stress at E is zero, (e) the state of stress at point B.

![Fig. 3](image3.png)