

Ph.D. Qualifying Exam — Mechanics of Materials (Fall 2010)

Closed books & closed notes	Name:
(Time: 2 hours)	ID #:

1. Two solid steel shafts AB and CD are fitted with flanges at B and C that are then connected by bolts as shown in Fig. 1. The bolts are slightly undersized and permit a 3° rotation of one flange with respect to the other before the flanges begin to rotate as a single unit. Knowing that the torque applied to the flange at B has a magnitude T = 420 lb·ft and the modulus of rigidity for steel is $G = 11.2 \times 10^6$ psi, determine the maximum shearing stresses $(\tau_{\text{max}})_{AB}$ and $(\tau_{\text{max}})_{CD}$ developed in these two shafts.

- **2.** A state of stress at a point is obtained by the superposition of two states of stress at the same point as shown in Fig. 2. Using Mohr's circle, determine (a) the values of σ_x , σ_y , and τ_{xy} as indicated; (b) the principal stresses σ_{max} and σ_{min} at this point; (c) the principle planes associated with σ_{max} and σ_{min} .
- **3.** A continuous beam AB with constant flexural rigidity EI and total length 2L has a roller support at A, a roller support at C, a fixed support at B and carries a linearly distributed load as shown in Fig. 3. Determine (a) the vertical reaction force \mathbf{A}_y and the slope θ_A at A, (b) the vertical reaction force \mathbf{C}_y and the slope θ_C at C.

