1. Two solid steel shafts AB and CD are fitted with flanges at B and C that are then connected by bolts as shown in Fig. 1. The bolts are slightly undersized and permit a 3° rotation of one flange with respect to the other before the flanges begin to rotate as a single unit. Knowing that the torque applied to the flange at B has a magnitude $T = 420 \text{ lb-ft}$ and the modulus of rigidity for steel is $G = 11.2 \times 10^6 \text{ psi}$, determine the maximum shearing stresses $(\tau_{\text{max}})_{AB}$ and $(\tau_{\text{max}})_{CD}$ developed in these two shafts.

![Fig. 1](image1)

![Fig. 2](image2)

2. A state of stress at a point is obtained by the superposition of two states of stress at the same point as shown in Fig. 2. Using Mohr’s circle, determine (a) the values of σ_x, σ_y, and τ_{xy} as indicated; (b) the principal stresses σ_{max} and σ_{min} at this point; (c) the principle planes associated with σ_{max} and σ_{min}.

![Fig. 3](image3)

3. A continuous beam AB with constant flexural rigidity EI and total length $2L$ has a roller support at A, a roller support at C, a fixed support at B and carries a linearly distributed load as shown in Fig. 3. Determine (a) the vertical reaction force A_y and the slope θ_A at A, (b) the vertical reaction force C_y and the slope θ_C at C.

![Fig. 3](image4)