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ABSTRACT 
 

 This paper is aimed at developing a new approach to 
analyzing statically indeterminate reactions at supports, as well 
as the slopes and deflections, of beams. The approach uses a set 
of four general formulas, derived using singularity functions. 
These formulas are expressed in terms of shear forces, bending 
moments, distributed loads, slopes, and deflections of a beam 
having a constant flexural rigidity and carrying typical loads. 
These loads include (a) a bending moment and a shear force at 
the left, as well as at the right, end of the beam, (b) a 
concentrated force, as well as a concentrated moment, 
somewhere on the beam; and (c) a uniformly, as well as a 
linearly varying, distributed force over a portion of the beam. 
The approach allows one to treat reactions at supports (even 
supports not at the ends of a beam) as concentrated forces or 
moments, where corresponding boundary conditions at the 
points of supports are to be imposed. This feature allows one to 
readily determine reactions at supports as well as slopes and 
deflections of beams. A beam needs to be divided into segments 
for study if it contains discontinuities in slope at hinge 
connections or different flexural rigidities in different segments. 
Several examples are included to illustrate the new approach. 
 
INTRODUCTION 
 

 There are different established methods for determining 
deflections of beams, which may be found in published papers 
and textbooks for the traditional undergraduate course in me-
chanics of materials. These methods may include the following 
[1-6]:  
 

(a) method of double integration (with or without the use of 
singularity functions), 

(b) method of superposition, 
(c) method using moment-area theorems, 
(d) method using Castigliano’s theorem, and 
(e) conjugate beam method. 

 

Naturally, there are advantages and disadvantages in using any 
of the above methods. This paper is aimed at expanding the

mechanics literature by presenting a new approach and making 
available a new method to mechanics practitioners and educa-
tors for their choice and at their disposal when it comes to de-
termining reactions and deflections of beams. It is also intended 
to contribute to the enrichment of one’s learning experience. 
 The paper begins with the description of sign conventions 
and derives four general formulas for the slope and deflection 
of a beam segment having a constant flexural rigidity and car-
rying a variety of typical, applied loads. These formulas, de-
rived using singularity functions, form the basis for a new ap-
proach to solving problems involving reactions and deflections 
of beams. This approach is consistent in philosophy with the 
approach presented in most mechanics of materials textbooks in 
treating axially loaded bars and torsionally loaded shafts. Ap-
plication of these formulas is direct and requires no further in-
tegration or writing of continuity equations. This new approach 
can readily be extended to the analysis of beams having discon-
tinuities in slope at hinge connections or different flexural ri-
gidities in different segments. It can solve both statically de-
terminate and statically indeterminate beam problems. 
 
SIGN CONVENTIONS 
 

 A segment of beam ab having a constant flexural rigidity 
EI is shown in Fig. 1. Note that we adopt the positive directions 
of the shear forces, moments, and distributed loads as indicated. 
 

 
 

Fig. 1:  Positive directions of shear forces, moments, and loads 
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As in most textbooks for mechanics of materials, notice in Fig. 
1 the following conventions: 
(a) a positive shear force is one that tends to rotate the beam 

segment clockwise (e.g.,  at the left end a, and  at 
the right end b), 

aV bV

(b) a positive moment is one that tends to cause compression in 
the top fiber of the beam (e.g.,  at the left end a, b at 
the right end b, and the applied moment K tending to cause 
compression in the top fiber of the beam just to the right of 
the position where the moment K acts), 

aM M

(c) a positive concentrated force applied to the beam is one 
that is directed downward (e.g., the applied force P), and 

(d) a positive distributed load is one that is directed downward 
(e.g., the uniformly distributed load with intensity 0 , and 
the linearly varying distributed load with highest intensity 

). 

w

1w
 

 
 

 

Fig. 2:  Positive deflections and positive slopes of beam ab 
 
 The positive directions of deflections and slopes of the 
beam are defined as illustrated in Fig. 2. As in most textbooks 
for mechanics of materials, notice in Fig. 2 the following con-
ventions: 
(a) a positive deflection is an upward displacement (e.g.,  at 

position a, and  at position b), 
ay

b
(b) a positive slope is a counterclockwise rotation (e.g., 

y
aθ  at 

position a, and bθ  at position b). 
 
DERIVATION OF GENERAL FORMULAS 
 

 Using singularity functions [7, 8], we may write the load-
ing function q, the shear force V, and the bending moment M 
for the beam ab in Fig. 1 as 
 

 
 

1 2 1
a a P Kq V x M x P x x K x x− − −= < > + < > − < − > + < − > 2−  

             0 11
0 w w

w

ww x x x xL x
− < − > − < − >

−  (1) 
 

0 1 0
a a P KV V x M x P x x K x x− −= < > + < > − < − > + < − > 1  

              1 21
0 2 ( )w w

w

ww x x x xL x
− < − > − < − >

−
 (2) 

 
 
 

1 0 1
a a P KM V x M x P x x K x x= < > + < > − < − > + < − >0  

                20 1 3

2 ( )6w w
w

w wx x x xL x
− < − > − < − >

−
 (3) 

 
 
 

Letting EI be the flexural rigidity, y be the deflection, y′  be the 
slope, and  be the second derivative of y with respect to the 
abscissa x for the prismatic segment of beam ab, we write [4] 

y′′

 
 
 
 

EIy M′′ =  
 
 
 

1 0 1
a a P KEIy V x M x P x x K x x′′= < > + < > − < − > + < − >0  

                  20 1 3

2 ( )6w w
w

w wx x x xL x
− < − > − < − >

−
 (4) 

2 1 21 1
2 2a a P KEIy V x M x P x x K x x′ 1= < > + < > − < − > + < − >  

              30 1 4
1( )6 24w w

w

w wx x x x CL x
− < − > − < − > +−

 (5) 
 
 

3 2 31 1 1 1
6 62 2a a P KEIy V x M x P x x K x x 2= < > + < > − < − > + < − >  

          40 1 5
1( )24 120w w

w

w wx x x x C x CL x
− < − > − < − > 2+ +−

 (6) 
 

The slope and deflection of the beam in Fig. 1 at its left end a 
(i.e., at x = 0) are aθ  and a , respectively, as illustrated in Fig. 
2. Imposition of these two boundary conditions on Eqs. (5) and 
(6) allows us to obtain the values for the constants of integra-
tion  and  as follows: 

y

1C 2C
 

                                           1 aC EIθ=  (7) 
                                            (8) 2 aC EIy=
 

Substituting Eqs. (7) and (8) into Eqs. (5) and (6), we obtain the 
general formulas for the slope  and deflection y, at any po-
sition x, of the beam ab in Fig. 1 as follows: 

y′

 

2 12

2 2
a a

a P K
MV P Ky x x x x x

EI EI EI EI
θ′ x= + + − < − > + < − >  

           30 1 4

( )6 24w w
w

w wx x x xEI EI L x
− < − > − < − >

−
 (9) 

 

3 223

26 2 6
a a

a a P K
MV P Ky y x x x x x x x

EI EIEI EI
θ= + + + − < − > + < − >

      40 1 5

( )24 120w w
w

w wx x x xL xEI EI
− < − > − < − >

−
 (10) 

 

By letting x = L in Eqs. (9) and (10), we obtain the general 
formulas for the slope bθ  and deflection b , at the right end b, 

of the beam ab in Fig. 1, as illustrated in Fig. 2, as follows: 
y

 

2
2( ) (

2 2
a a

ab )P K
V M LL P KL x L x

EI EI EI EI
θ θ= + + − − + −  

                  30 14
(24 w

w w
)xLEI

+
− −  (11) 

 

3 2
3 2( ) (

6 26 2
a a

a ab P
MV L L P Ky y L L x L x

EI EIEI EI
θ= + + + − − + − )K  

            1 405
(120 w

w w
L xEI )

+
− −  (12) 

 
A NEW APPROACH TO ANALYZING BEAMS 
 

 The set of four general formulas given by Eqs. (9) 
through (12) may be used as the basis upon which to formulate 
a new approach to analyzing statically indeterminate reactions 
at supports, as well as the slopes and deflections, of beams. The 
beams may carry a variety of loads, as illustrated in Fig. 1. 
 Note that L in the general formulas represents the total 
length of the beam segment, to which the general formulas are 
to be applied. These formulas have already taken into account 
the boundary conditions of the beam at its ends. Furthermore, 
this approach allows one to treat reactions at interior supports 
(those not at the ends of the beam) as applied concentrated 
forces or moments. All one has to do is to simply impose the 
additional corresponding boundary conditions at the interior 
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supports for the beam segment. Thus, the new approach allows 
one to readily determine statically indeterminate reactions as 
well as slopes and deflections of beams. 
 A beam needs to be divided into separate segments for 
study only if (a) it contains segments of different flexural ri-
gidities, and (b) it is a combined beam (e.g., Gerber beam) hav-
ing discontinuities in slope at hinge connections between seg-
ments. The new approach proposed in this paper can best be 
understood with illustrations. Therefore, simple as well as more 
challenging problems are included in the following examples. 
 

Example 1.  A beam AB with a constant flexural rigidity EI, a 
roller support at A, a fixed support at B, and carrying a linearly 
distributed load over a portion of its length is given in Fig. 3. 
Determine the vertical reaction force and the slope yA Aθ  at A. 

 

 
Fig. 3:  Propped cantilever with a linearly distributed load 

 

Solution.  This beam is statically indeterminate to the first de-
gree, and we have wx L b= − . The boundary conditions reveal 
that the deflection and the moment at the roller support A, as 
well as the slope and deflection at the fixed support B, are all 
equal to zero. Applying the general formulas in Eqs. (11) and 
(12), successively, to the entire beam, we write 

2
3100 0 0 0 [ (

2 24
y

A
A L w L L b

EI EI
θ +

= + + − + − − − )]  

3
1 400 0 0 0 0 [ ( )]

6 120
y

A
A L wL

EI EI
θ +

= + + + − + − − −L L b  
 

The above two simultaneous equations yield 
3 3

1 1
3

(5 ) (5 3 )            
24040y A

w b L b w b L bA
LEIL

θ
− −

= = −  
 

Consistent with the defined sign conventions, we report that 
 
 

3
1

3

(5 )
 

40y
w b L b

L
−

= ↑A         
3

1 (5 3 )
240A

w b L b
LEI

θ
−

= −  
 

Example 2.  A fixed-ended beam AB with a constant flexural 
rigidity EI and carrying a linearly distributed load over a por-
tion of its length is given in Fig. 4. Determine (a) the vertical 
reaction force  and the reaction moment  at A, (b) the 
slope 

yA AM
Cθ  and deflection  at C. Cy

 

 
 

Fig. 4:  Fixed-ended beam with a linearly distributed load 
 

Solution.  This beam is statically indeterminate to the second 
degree, and we have wx L b= − . The boundary conditions re-
veal that the slope and deflection of the beam at A and B are all 
equal to zero. Applying the general formulas in Eqs. (11) and 
(12), successively, to the entire beam, we write 

2
3100 0 0 0 [ ( )]

2 24
y AA L M L w L L b
EI EI EI

+
= + + − + − − −  

 

3 2
1 400 0 0 0 0 [ ( )]

6 2 120
y AA L M L w L L b
EI EI EI

+
= + + + − + − − −  

 

The above two simultaneous equations yield 
 

3 3
1 1

3 2

(5 2 ) (5 3 )            
20 60y A

w b L b w b L bA M
L L
− −

= = −  
 

Consistent with the defined sign conventions, we report that 
 
 

3
1

3

(5 2 )
20y

w b L b
L
−

= ↑A         
3

1
2

(5 3 )  
60A

w b L b
L
−

=M  
 

The position C of the beam is located at x = L – b. Applying the 
general formulas in Eqs. (9) and (10), successively, to the entire 
beam and, at the same time, utilizing the preceding solutions 
for yA  and AM , we write 

 
 

2
41( ) ( )0 0 0 0

2 24
y A

C
A L b wM L b

EI EI EIb
θ

− −= + + − + − − (0)  
 
 

3 2 2
1

3

( ) (5 6 15
120C

w b L b L b bL
L EI

θ − + −
=

)  
 
 

3 2
1 5( ) ( )0 0 0 0 0 (0)1206 2

y A
C

A L b wM L by EIbEI EI
− −= + + + − + − −  

 

4 2
1

3
(2 )( )

60C
w b L b L by

L EI
− −= −  

 

Example 3.  A fixed-ended beam AB with a constant flexural 
rigidity EI and carrying a uniformly distributed load over a por-
tion of its length is given in Fig. 5. Determine (a) the vertical 
reaction force  and the reaction moment  at A, (b) the 
slope 

yA AM
Cθ  and deflection  at C. Cy

 

 
Fig. 5:  Fixed-ended beam with a uniformly distributed load 

 

Solution.  This beam is statically indeterminate to the second 
degree, and we have wx L b= − . The boundary conditions re-
veal that the slope and deflection of the beam at A and B are all 
equal to zero. Applying the general formulas in Eqs. (11) and 
(12) to the entire beam, we write 

2
0 34 00 0 0 0 [ ( )]

2 24
y AA L wM L L L b
EI EI EI

+
= + + − + − − −  

 

3 2
0 45 00 0 0 0 0 [ ( )]

6 2 120
y AA L wM L L L b
EI EI EI

+
= + + + − + − − −  

 

The above two simultaneous equations yield 
 

3 3
0 0

3 2

(2 ) (4 3 )            
2 1y A

w b L b w b L bA M
L L
− −

= = −
2

 
 

Consistent with the defined sign conventions, we report that 
 
 

3
0

3

(2 )
2y

w b L b
L
−

= ↑A         
3

0
2

(4 3 )  
12A

w b L b
L
−

=M  
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The position C of the beam is located at x = L – b. Applying the 
general formulas in Eqs. (9) and (10), successively, to the entire 
beam and, at the same time, utilizing the preceding solutions 
for yA  and AM , we write 

2
30( ) ( )0 0 0 (0)

2 6
y A

C
A L b wM L b

EI EI EI
θ

− −= + + − + − − 0  
 

3 2 2
0

3

( )(2 3 6
12C

w b L b L b bL
L EI

θ − + −
=

)  
 

3 2
40( ) ( )0 0 0 0 (0) 0246 2

y A
C

A L b wM L by EIEI EI
− −= + + + − + − −  

 

23 2
0

3
( ) (2

12C
w L bb Ly

L EI
− −= −

2)b  
 

Example 4.  A fixed-ended beam AB with a constant flexural 
rigidity EI and carrying a concentrated moment K at C is given 
in Fig. 6. Determine (a) the vertical reaction force  and the 
reaction moment  at A, (b) the slope 

yA
AM Cθ  and deflection  

at C. 
Cy

 
 

Fig. 6:  Fixed-ended beam carrying a concentrated moment 
 

Solution.  This beam is statically indeterminate to the second 
degree, and we have Kx c= . The boundary conditions reveal 
that the slope and deflection of the beam at A and B are all 
equal to zero. Applying the general formulas in Eqs. (11) and 
(12) to the entire beam, we write 

2

0 0 0 ( ) 0
2

y AA L M L K L c
EI EI EI

= + + − + − −  
 

3 2
20 0 0 0 ( ) 0

6 2 2
y AA L M L K L c
EI EI EI

= + + + − + − −  
 

Since L = c + d, the above two simultaneous equations yield 

3 2
6 (             y A

2 )Kcd Kd c dA M
L L

−= − =  

Consistent with the defined sign conventions, we report that 
 

3

6  y
Kcd
L

= ↓A         2

(2 )  A
Kd c d

L
−

=M  
 

The position C is located at x = c. Applying the general formu-
las in Eqs. (9) and (10), successively, to the entire beam and, at 
the same time, utilizing the preceding solutions for yA  and 

AM , we write 
2

10 0 (0)
2

y A
C

cA c KM
EI EI EI

θ = + + − + − −0 0  
 
 

2

3

[( ) ]
C

Kcd c d cd
L EI

θ − +
= −  

 

3 2
20 0 0 (0) 0 0

6 2 2
y A

C
A c c KMy

EI EI EI
= + + + − + − −  

 
 

2 2

3
( )

2C
Kc d c dy

L EI
−

=  

Example 5.  A beam AB, which has a constant flexural rigidity 
EI, a fixed support at B, and a roller support at C, is loaded as 
shown in Fig. 7, where 2

0 3M wL= . Determine (a) the slope 
Aθ  and deflection A  at A, (b) the vertical reaction force  

and the slope 
y yC

Cθ  at C. 
 

 
 

Fig. 7:  Propped cantilever beam carrying loads 
 

Solution.  This beam is statically indeterminate to the first de-
gree. There is no need to divide this beam into two segments 
for analysis in the solution by the proposed new approach. We 
can simply treat the vertical reaction force at C as an un-
known applied concentrated force directed upward and regard 
the beam AB as one that has a total length of 2L, which is to be 
used as the value for the parameter L in the general formulas in 
Eqs. (9) through (12). The boundary conditions of this beam 
reveal that the slope and deflection at B are both equal to zero, 
the shear force at A is zero, the moment at A is –3wL

yC

2, and the 
deflection at C is zero. Applying the general formulas in Eqs. 
(11), (12), and (10), in that order, to the entire beam, we write 

 
 

2
2 33 (2 ) 4 00 0 (2 ) 0 (2 )

2 24
y

A
CwL L wL L L L

EI EI EI
θ

−− += + + − − + − −  
 
 

2 2
33 (2 )0 (2 ) 0 (2 )

2 6
y

AA
CwL Ly L L L

EI EI
θ

−−= + + + − − + 0  

                45 0 (2 )
120

w L L
EI
+− −  

 

2
230 0 ( ) 0 0 0 0

2A A
wLy L L
EI

θ −= + + + − + − −  
 

The above three simultaneous equations yield 
 

3 4179 107 39                    
48 48 8yA A

wL wL wLy C
EI EI

θ = = − =  
 

Consistent with the defined sign conventions, we report that 
 
 
 

3179
48A

wL
EI

θ =        
4107

48A
wLy
EI

= −        39
8

y
wL

= ↑C  
 
 
 

The position C is located at x = L. Applying the general formula 
in Eq. (9) to the entire beam and, at the same time, utilizing the 
preceding solutions for Aθ , we write 

 
 

230 ( ) 0 0 0 0C A
wL L

EI
θ θ −

= + + − + − −  
 
 

335
48C

wL
EI

θ =  

 
Example 6.  A combined beam (Gerber beam), with a constant 
flexural rigidity EI, fixed supports at its ends A and D, a hinge 
connection at B, and carrying a concentrated force P at C, is 
given in Fig. 8. Determine (a) the vertical reaction force  
and the reaction moment  at A, (b) the deflection 

yA
AM By  of the  
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hinge at B, (c) the slopes BLθ  and BRθ  just to the left and just to 
the right of the hinge at B, respectively, and (d) the slope Cθ  
and the deflection  at C. Cy

 

 
Fig. 8:  Fixed-ended beam with a hinge connector 

 

Solution.  This beam is statically indeterminate to the first de-
gree. Nevertheless, because of the discontinuity in slope at the 
hinge connection B, this beam needs to be divided into two 
segments AB and BD for analysis in the solution. The boundary 
conditions of this beam reveal that slope and deflection at A 
and D are all equal to zero. 

 

 
Fig. 9: Free-body diagram for segment AB and its deflections 

 

Applying the general formulas in Eqs. (11) and (12), succes-
sively, to segment AB, as shown in Fig. 9, we write 

 

                        
2

0 0
2

y A
BL

A L M L
EI EI

θ = + + − + −0 0  (a) 
 

                     
3 2

0 0 0 0 0
6 2

y A
B

A L M Ly
EI EI

= + + + − + −  (b) 
 
 

For equilibrium of segment AB, we write 
 
 

                      (c) 0 :yF+↑ Σ = 0y yA B− =
 

               (d) 0 :BM+ Σ = 0yAM LA− − =
 

 
 

Fig. 10: Free-body diagram for segment BD and its deflections 
 

Applying the general formulas in Eqs. (11) and (12), succes-
sively, to segment BD, as shown in Fig. 10, we write 

 

            
2

2(2 )
0 0 (2 )

2 2
y

BR

B L P L L
EI EI

θ= + + − − + −0 0  (e) 
 

    
3

3(2 )
0 (2 ) 0 (2 ) 0

6 6
y

BRB

B L Py L L L
EI EI

θ= + + + − − + − 0  ( f ) 
 
 

For equilibrium of segment BD, we write 
 
 

                   (g) 0 :yF+↑ Σ = 0y yB P D− − =
 

         (h) 0 :BM+ Σ = 2 0y DLP LD M− − + =
 
 

The above eight simultaneous equations yield 

 

5 5                        
18 18 18yy A
P PA B M= = =

5PL
−  

 

2 25              
36 18BL BR

PL PL
EI EI

θ θ= − = −  
 

313 4 5                        
18 9 54y D B

P PLD M y
EI

= − = − = −
PL  

 

Consistent with the defined sign conventions, we report that 
 

5
18

y
P

= ↑A           5  
18A
PL

=M           
35

54B
PLy
EI

= −  
 

25
36BL

PL
EI

θ = −             
2 22

18 36BR
PL PL

EI EI
θ = − = −  

 

The position C is located at x = L in Fig. 10. Applying the gen-
eral formulas in Eqs. (9) and (10), successively, to the segment 
BD in this figure and, at the same time, utilizing the preceding 
solutions for BRθ  and , we write yB

 

2 2( ) 0 (0) 0 0 0
2 2

y
BRC

B PL
EI EI

θ θ= + + − + − −  
 

2

12C
PL

EI
θ =  

 

2 3( ) 0 (0) 0 0 0
6 6

y
BRC B

B Py y L L
EI EI

θ= + + + − + − −  
 

311
108C

PLy
EI

= −  
 

Based on the preceding solutions, the deflections of the com-
bined beam AD may be illustrated as shown in Fig. 11. 

 

 
 

Fig. 11: Deflections of the beam AD 
 

 
CONCLUDING REMARKS 

 

 This paper presents the formulation of a new approach to 
analyzing statically indeterminate reactions at supports, as well 
as the slopes and deflections, of beams. A set of four general 
formulas, derived using singularity functions, is used as the 
basic tools for providing the material equations, besides the 
equations of static equilibrium, for the solution of indetermi-
nate reactions, slopes, and reactions at supports of beams. 
These formulas are expressed in terms of (a) a bending moment 
and a shear force at the left, as well as at the right, end of the 
beam, (b) a concentrated force, as well as a concentrated mo-
ment, somewhere on the beam; and (c) a uniformly, as well as a 
linearly varying, distributed force over a portion of the beam. 
 The proposed approach depends heavily on a collection of 
material formulas. In a way, it is a method of formulary. It al-
lows one to treat unknown reactions at supports (even supports 
not at the ends of a beam) as concentrated forces or moments. A 
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beam needs to be divided into separate segments for study only 
if (a) it contains segments of different flexural rigidities, and 
(b) it is a combined beam having discontinuities in slope at 
hinge connections between segments. Note that L in the general 
formulas represents the total length of the beam segment, to 
which the general formulas are to be applied. 
 
REFERENCES 

 

[1] Westergaard, H. M., “Deflections of Beams by the Conju-
gate Beam Method,” Journal of the Western Society of En-
gineers, Volume XXVI, Number 11, 1921, pp. 369-396. 

[2] Timoshenko, S., and G. H. MacCullough, Elements of 
Strength of Materials, Third Edition, D. Van Nostrand 
Company, Inc., New York, NY, 1949, pp.179-181. 

[3] Singer, F. L., and A. Pytel, Strength of Materials, Fourth 
Edition, Harper & Row, Publishers, Inc., New York, NY, 
1987, pp. 228-232. 

[4] Beer, F. P., E. R. Johnston, Jr., and J. T. DeWolf, Mechan-
ics of Materials, Fourth Edition, The McGraw-Hill Com-
panies, Inc., New York, NY, 2006. 

[5] Pytel, A., and J. Kiusalaas, Mechanics of Materials, 
Brooks/Cole, Pacific Grove, CA, 2003. 

[6] Gere, J. M., Mechanics of Materials, Sixth Edition, 
Brooks/Cole, Pacific Grove, CA, 2004. 

[7] Shigley, J. E., Mechanical Engineering Design, Fourth 
Edition, McGraw-Hill Company, New York, NY, 1983, pp. 
45-48. 

[8] Crandall, S. H., C. D. Norman, and T. J. Lardner, An Intro-
duction to the Mechanics of Solids, Second Edition, 
McGraw-Hill Company, New York, NY, 1972, pp. 164-
172. 

 


