IMECE2006-13902

A NEW APPROACH TO ANALYZING REACTIONS AND DEFLECTIONS OF BEAMS: FORMULATION AND EXAMPLES

I. C. JONG
Mechanical Engineering Department University of Arkansas
Fayetteville, Arkansas 72701
icjong@uark.edu

J. J. RENCIS
Mechanical Engineering Department University of Arkansas
Fayetteville, Arkansas 72701
jjrencis@uark.edu

H. T. GRANDIN, JR.
Mechanical Engineering Department
Worcester Polytechnic Institute
Worcester, Massachusetts 01609
hgrandin@rcn.com

Abstract

This paper is aimed at developing a new approach to analyzing statically indeterminate reactions at supports, as well as the slopes and deflections, of beams. The approach uses a set of four general formulas, derived using singularity functions. These formulas are expressed in terms of shear forces, bending moments, distributed loads, slopes, and deflections of a beam having a constant flexural rigidity and carrying typical loads. These loads include (a) a bending moment and a shear force at the left, as well as at the right, end of the beam, (b) a concentrated force, as well as a concentrated moment, somewhere on the beam; and (c) a uniformly, as well as a linearly varying, distributed force over a portion of the beam. The approach allows one to treat reactions at supports (even supports not at the ends of a beam) as concentrated forces or moments, where corresponding boundary conditions at the points of supports are to be imposed. This feature allows one to readily determine reactions at supports as well as slopes and deflections of beams. A beam needs to be divided into segments for study if it contains discontinuities in slope at hinge connections or different flexural rigidities in different segments. Several examples are included to illustrate the new approach.

INTRODUCTION

There are different established methods for determining deflections of beams, which may be found in published papers and textbooks for the traditional undergraduate course in mechanics of materials. These methods may include the following [1-6]:
(a) method of double integration (with or without the use of singularity functions),
(b) method of superposition,
(c) method using moment-area theorems,
(d) method using Castigliano's theorem, and
(e) conjugate beam method.

Naturally, there are advantages and disadvantages in using any of the above methods. This paper is aimed at expanding the
mechanics literature by presenting a new approach and making available a new method to mechanics practitioners and educators for their choice and at their disposal when it comes to determining reactions and deflections of beams. It is also intended to contribute to the enrichment of one's learning experience.

The paper begins with the description of sign conventions and derives four general formulas for the slope and deflection of a beam segment having a constant flexural rigidity and carrying a variety of typical, applied loads. These formulas, derived using singularity functions, form the basis for a new approach to solving problems involving reactions and deflections of beams. This approach is consistent in philosophy with the approach presented in most mechanics of materials textbooks in treating axially loaded bars and torsionally loaded shafts. Application of these formulas is direct and requires no further integration or writing of continuity equations. This new approach can readily be extended to the analysis of beams having discontinuities in slope at hinge connections or different flexural rigidities in different segments. It can solve both statically determinate and statically indeterminate beam problems.

SIGN CONVENTIONS

A segment of beam $a b$ having a constant flexural rigidity $E I$ is shown in Fig. 1. Note that we adopt the positive directions of the shear forces, moments, and distributed loads as indicated.

Fig. 1: Positive directions of shear forces, moments, and loads

As in most textbooks for mechanics of materials, notice in Fig. 1 the following conventions:
(a) a positive shear force is one that tends to rotate the beam segment clockwise (e.g., \mathbf{V}_{a} at the left end a, and \mathbf{V}_{b} at the right end b),
(b) a positive moment is one that tends to cause compression in the top fiber of the beam (e.g., \mathbf{M}_{a} at the left end a, \mathbf{M}_{b} at the right end b, and the applied moment \mathbf{K} tending to cause compression in the top fiber of the beam just to the right of the position where the moment \mathbf{K} acts),
(c) a positive concentrated force applied to the beam is one that is directed downward (e.g., the applied force \mathbf{P}), and
(d) a positive distributed load is one that is directed downward (e.g., the uniformly distributed load with intensity w_{0}, and the linearly varying distributed load with highest intensity w_{1}).

Fig. 2: Positive deflections and positive slopes of beam $a b$
The positive directions of deflections and slopes of the beam are defined as illustrated in Fig. 2. As in most textbooks for mechanics of materials, notice in Fig. 2 the following conventions:
(a) a positive deflection is an upward displacement (e.g., y_{a} at position a, and y_{b} at position b),
(b) a positive slope is a counterclockwise rotation (e.g., θ_{a} at position a, and θ_{b} at position b).

DERIVATION OF GENERAL FORMULAS

Using singularity functions [7, 8], we may write the loading function q, the shear force V, and the bending moment M for the beam $a b$ in Fig. 1 as

$$
\begin{align*}
q= & V_{a}<x>^{-1}+M_{a}<x>^{-2}-P<x-x_{P}>^{-1}+K<x-x_{K}>^{-2} \\
& -w_{0}<x-x_{w}>^{0}-\frac{w_{1}}{L-x_{w}}<x-x_{w}>^{1} \tag{1}\\
V= & V_{a}<x>^{0}+M_{a}<x>^{-1}-P<x-x_{P}>^{0}+K<x-x_{K}>^{-1} \\
& -w_{0}<x-x_{w}>^{1}-\frac{w_{1}}{2\left(L-x_{w}\right)}<x-x_{w}>^{2} \tag{2}\\
M= & V_{a}<x>^{1}+M_{a}<x>^{0}-P<x-x_{P}>^{1}+K<x-x_{K}>^{0} \\
& -\frac{w_{0}}{2}<x-x_{w}>^{2}-\frac{w_{1}}{6\left(L-x_{w}\right)}<x-x_{w}>^{3} \tag{3}
\end{align*}
$$

Letting $E I$ be the flexural rigidity, y be the deflection, y^{\prime} be the slope, and $y^{\prime \prime}$ be the second derivative of y with respect to the abscissa x for the prismatic segment of beam $a b$, we write [4]

$$
\begin{gather*}
E I y^{\prime \prime}=M \\
E I y^{\prime \prime}=V_{a}<x>^{1}+M_{a}<x>^{0}-P<x-x_{P}>^{1}+K<x-x_{K}>^{0} \\
-\frac{w_{0}}{2}<x-x_{w}>^{2}-\frac{w_{1}}{6\left(L-x_{w}\right)}<x-x_{w}>^{3} \tag{4}
\end{gather*}
$$

$$
\begin{align*}
\text { EIy }= & \frac{1}{2} V_{a}\left\langle x>^{2}+M_{a}<x>^{1}-\frac{1}{2} P<x-x_{P}>^{2}+K<x-x_{K}>^{1}\right. \\
& -\frac{w_{0}}{6}<x-x_{w}>^{3}-\frac{w_{1}}{24\left(L-x_{w}\right)}<x-x_{w}>^{4}+C_{1} \tag{5}\\
\text { EIy }= & \frac{1}{6} V_{a}<x>^{3}+\frac{1}{2} M_{a}<x>^{2}-\frac{1}{6} P<x-x_{P}>^{3}+\frac{1}{2} K<x-x_{K}>^{2} \\
- & \frac{w_{0}}{24}<x-x_{w}>^{4}-\frac{w_{1}}{120\left(L-x_{w}\right)}<x-x_{w}>^{5}+C_{1} x+C_{2} \tag{6}
\end{align*}
$$

The slope and deflection of the beam in Fig. 1 at its left end a (i.e., at $x=0$) are θ_{a} and y_{a}, respectively, as illustrated in Fig. 2. Imposition of these two boundary conditions on Eqs. (5) and (6) allows us to obtain the values for the constants of integration C_{1} and C_{2} as follows:

$$
\begin{align*}
& C_{1}=E I \theta_{a} \tag{7}\\
& C_{2}=E I y_{a} \tag{8}
\end{align*}
$$

Substituting Eqs. (7) and (8) into Eqs. (5) and (6), we obtain the general formulas for the slope y^{\prime} and deflection y, at any position x, of the beam $a b$ in Fig. 1 as follows:

$$
\begin{align*}
y^{\prime}= & \theta_{a}+\frac{V_{a}}{2 E I} x^{2}+\frac{M_{a}}{E I} x-\frac{P}{2 E I}<x-x_{P}>^{2}+\frac{K}{E I}<x-x_{K}>^{1} \\
& -\frac{w_{0}}{6 E I}<x-x_{w}>^{3}-\frac{w_{1}}{24 E I\left(L-x_{w}\right)}<x-x_{w}>^{4} \tag{9}\\
y= & y_{a}+\theta_{a} x+\frac{V_{a}}{6 E I} x^{3}+\frac{M_{a}}{2 E I} x^{2}-\frac{P}{6 E I}<x-x_{P}>^{3}+\frac{K}{2 E I}<x-x_{K}>^{2} \\
& -\frac{w_{0}}{24 E I}<x-x_{w}>^{4}-\frac{w_{1}}{120 E I\left(L-x_{w}\right)}<x-x_{w}>^{5} \tag{10}
\end{align*}
$$

By letting $x=L$ in Eqs. (9) and (10), we obtain the general formulas for the slope θ_{b} and deflection y_{b}, at the right end b, of the beam $a b$ in Fig. 1, as illustrated in Fig. 2, as follows:

$$
\begin{align*}
\theta_{b}= & \theta_{a}+\frac{V_{a} L^{2}}{2 E I}+\frac{M_{a} L}{E I}-\frac{P}{2 E I}\left(L-x_{P}\right)^{2}+\frac{K}{E I}\left(L-x_{K}\right) \\
& -\frac{4 w_{0}+w_{1}}{24 E I}\left(L-x_{w}\right)^{3} \tag{11}\\
y_{b}=y_{a}+ & \theta_{a} L+\frac{V_{a} L^{3}}{6 E I}+\frac{M_{a} L^{2}}{2 E I}-\frac{P}{6 E I}\left(L-x_{P}\right)^{3}+\frac{K}{2 E I}\left(L-x_{K}\right)^{2} \\
& -\frac{5 w_{0}+w_{1}}{120 E I}\left(L-x_{w}\right)^{4} \tag{12}
\end{align*}
$$

A NEW APPROACH TO ANALYZING BEAMS

The set of four general formulas given by Eqs. (9) through (12) may be used as the basis upon which to formulate a new approach to analyzing statically indeterminate reactions at supports, as well as the slopes and deflections, of beams. The beams may carry a variety of loads, as illustrated in Fig. 1.

Note that L in the general formulas represents the total length of the beam segment, to which the general formulas are to be applied. These formulas have already taken into account the boundary conditions of the beam at its ends. Furthermore, this approach allows one to treat reactions at interior supports (those not at the ends of the beam) as applied concentrated forces or moments. All one has to do is to simply impose the additional corresponding boundary conditions at the interior
supports for the beam segment. Thus, the new approach allows one to readily determine statically indeterminate reactions as well as slopes and deflections of beams.

A beam needs to be divided into separate segments for study only if (a) it contains segments of different flexural rigidities, and (b) it is a combined beam (e.g., Gerber beam) having discontinuities in slope at hinge connections between segments. The new approach proposed in this paper can best be understood with illustrations. Therefore, simple as well as more challenging problems are included in the following examples.
Example 1. A beam $A B$ with a constant flexural rigidity $E I$, a roller support at A, a fixed support at B, and carrying a linearly distributed load over a portion of its length is given in Fig. 3. Determine the vertical reaction force \mathbf{A}_{y} and the slope θ_{A} at A.

Fig. 3: Propped cantilever with a linearly distributed load
Solution. This beam is statically indeterminate to the first degree, and we have $x_{w}=L-b$. The boundary conditions reveal that the deflection and the moment at the roller support A, as well as the slope and deflection at the fixed support B, are all equal to zero. Applying the general formulas in Eqs. (11) and (12), successively, to the entire beam, we write

$$
\begin{gathered}
0=\theta_{A}+\frac{A_{y} L^{2}}{2 E I}+0-0+0-\frac{0+w_{1}}{24 E I}[L-(L-b)]^{3} \\
0= \\
0+\theta_{A} L+\frac{A_{y} L^{3}}{6 E I}+0-0+0-\frac{0+w_{1}}{120 E I}[L-(L-b)]^{4}
\end{gathered}
$$

The above two simultaneous equations yield

$$
A_{y}=\frac{w_{1} b^{3}(5 L-b)}{40 L^{3}} \quad \theta_{A}=-\frac{w_{1} b^{3}(5 L-3 b)}{240 L E I}
$$

Consistent with the defined sign conventions, we report that

$$
\mathbf{A}_{y}=\frac{w_{1} b^{3}(5 L-b)}{40 L^{3}} \uparrow \quad \theta_{A}=-\frac{w_{1} b^{3}(5 L-3 b)}{240 L E I}
$$

Example 2. A fixed-ended beam $A B$ with a constant flexural rigidity $E I$ and carrying a linearly distributed load over a portion of its length is given in Fig. 4. Determine (a) the vertical reaction force \mathbf{A}_{y} and the reaction moment \mathbf{M}_{A} at A, (b) the slope θ_{C} and deflection y_{C} at C.

Fig. 4: Fixed-ended beam with a linearly distributed load
Solution. This beam is statically indeterminate to the second degree, and we have $x_{w}=L-b$. The boundary conditions reveal that the slope and deflection of the beam at A and B are all equal to zero. Applying the general formulas in Eqs. (11) and (12), successively, to the entire beam, we write

$$
\begin{gathered}
0=0+\frac{A_{y} L^{2}}{2 E I}+\frac{M_{A} L}{E I}-0+0-\frac{0+w_{1}}{24 E I}[L-(L-b)]^{3} \\
0=0+0+\frac{A_{y} L^{3}}{6 E I}+\frac{M_{A} L^{2}}{2 E I}-0+0-\frac{0+w_{1}}{120 E I}[L-(L-b)]^{4}
\end{gathered}
$$

The above two simultaneous equations yield

$$
A_{y}=\frac{w_{1} b^{3}(5 L-2 b)}{20 L^{3}} \quad M_{A}=-\frac{w_{1} b^{3}(5 L-3 b)}{60 L^{2}}
$$

Consistent with the defined sign conventions, we report that

$$
\mathbf{A}_{y}=\frac{w_{1} b^{3}(5 L-2 b)}{20 L^{3}} \uparrow \quad \mathbf{M}_{A}=\frac{w_{1} b^{3}(5 L-3 b)}{60 L^{2}} \cup
$$

The position C of the beam is located at $x=L-b$. Applying the general formulas in Eqs. (9) and (10), successively, to the entire beam and, at the same time, utilizing the preceding solutions for A_{y} and M_{A}, we write

$$
\begin{gathered}
\theta_{C}=0+\frac{A_{y}(L-b)^{2}}{2 E I}+\frac{M_{A}(L-b)}{E I}-0+0-0-\frac{w_{1}}{24 E I b}(0)^{4} \\
\theta_{C}=\frac{w_{1} b^{3}(L-b)\left(5 L^{2}+6 b^{2}-15 b L\right)}{120 L^{3} E I} \\
y_{C}=0+0+\frac{A_{y}(L-b)^{3}}{6 E I}+\frac{M_{A}(L-b)^{2}}{2 E I}-0+0-0-\frac{w_{1}}{120 E I b}(0)^{5} \\
y_{C}=-\frac{w_{1} b^{4}(2 L-b)(L-b)^{2}}{60 L^{3} E I}
\end{gathered}
$$

Example 3. A fixed-ended beam $A B$ with a constant flexural rigidity $E I$ and carrying a uniformly distributed load over a portion of its length is given in Fig. 5. Determine (a) the vertical reaction force \mathbf{A}_{y} and the reaction moment \mathbf{M}_{A} at $A,(b)$ the slope θ_{C} and deflection y_{C} at C.

Fig. 5: Fixed-ended beam with a uniformly distributed load
Solution. This beam is statically indeterminate to the second degree, and we have $x_{w}=L-b$. The boundary conditions reveal that the slope and deflection of the beam at A and B are all equal to zero. Applying the general formulas in Eqs. (11) and (12) to the entire beam, we write

$$
\begin{aligned}
0 & =0+\frac{A_{y} L^{2}}{2 E I}+\frac{M_{A} L}{E I}-0+0-\frac{4 w_{0}+0}{24 E I}[L-(L-b)]^{3} \\
0 & =0+0+\frac{A_{y} L^{3}}{6 E I}+\frac{M_{A} L^{2}}{2 E I}-0+0-\frac{5 w_{0}+0}{120 E I}[L-(L-b)]^{4}
\end{aligned}
$$

The above two simultaneous equations yield

$$
A_{y}=\frac{w_{0} b^{3}(2 L-b)}{2 L^{3}} \quad M_{A}=-\frac{w_{0} b^{3}(4 L-3 b)}{12 L^{2}}
$$

Consistent with the defined sign conventions, we report that

$$
\mathbf{A}_{y}=\frac{w_{0} b^{3}(2 L-b)}{2 L^{3}} \uparrow \quad \mathbf{M}_{A}=\frac{w_{0} b^{3}(4 L-3 b)}{12 L^{2}} \cup
$$

The position C of the beam is located at $x=L-b$. Applying the general formulas in Eqs. (9) and (10), successively, to the entire beam and, at the same time, utilizing the preceding solutions for A_{y} and M_{A}, we write

$$
\begin{gathered}
\theta_{C}=0+\frac{A_{y}(L-b)^{2}}{2 E I}+\frac{M_{A}(L-b)}{E I}-0+0-\frac{w_{0}}{6 E I}(0)^{3}-0 \\
\theta_{C}=\frac{w_{0} b^{3}(L-b)\left(2 L^{2}+3 b^{2}-6 b L\right)}{12 L^{3} E I} \\
y_{C}=0+0+\frac{A_{y}(L-b)^{3}}{6 E I}+\frac{M_{A}(L-b)^{2}}{2 E I}-0+0-\frac{w_{0}}{24 E I}(0)^{4}-0 \\
y_{C}=-\frac{w_{0} b^{3}(L-b)^{2}\left(2 L^{2}-b^{2}\right)}{12 L^{3} E I}
\end{gathered}
$$

Example 4. A fixed-ended beam $A B$ with a constant flexural rigidity $E I$ and carrying a concentrated moment \mathbf{K} at C is given in Fig. 6. Determine (a) the vertical reaction force \mathbf{A}_{y} and the reaction moment \mathbf{M}_{A} at A, (b) the slope θ_{C} and deflection y_{C} at C.

Fig. 6: Fixed-ended beam carrying a concentrated moment
Solution. This beam is statically indeterminate to the second degree, and we have $x_{K}=c$. The boundary conditions reveal that the slope and deflection of the beam at A and B are all equal to zero. Applying the general formulas in Eqs. (11) and (12) to the entire beam, we write

$$
\begin{gathered}
0=0+\frac{A_{y} L^{2}}{2 E I}+\frac{M_{A} L}{E I}-0+\frac{K}{E I}(L-c)-0 \\
0=0+0+\frac{A_{y} L^{3}}{6 E I}+\frac{M_{A} L^{2}}{2 E I}-0+\frac{K}{2 E I}(L-c)^{2}-0
\end{gathered}
$$

Since $L=c+d$, the above two simultaneous equations yield

$$
A_{y}=-\frac{6 K c d}{L^{3}} \quad M_{A}=\frac{K d(2 c-d)}{L^{2}}
$$

Consistent with the defined sign conventions, we report that

$$
\mathbf{A}_{y}=\frac{6 K c d}{L^{3}} \downarrow \quad \mathbf{M}_{A}=\frac{K d(2 c-d)}{L^{2}} \circlearrowright
$$

The position C is located at $x=c$. Applying the general formulas in Eqs. (9) and (10), successively, to the entire beam and, at the same time, utilizing the preceding solutions for A_{y} and M_{A}, we write

$$
\begin{gathered}
\theta_{C}=0+\frac{A_{y} c^{2}}{2 E I}+\frac{M_{A} c}{E I}-0+\frac{K}{E I}(0)^{1}-0-0 \\
\theta_{C}=-\frac{K c d\left[(c-d)^{2}+c d\right]}{L^{3} E I} \\
y_{C}=0+0+\frac{A_{y} c^{3}}{6 E I}+\frac{M_{A} c^{2}}{2 E I}-0+\frac{K}{2 E I}(0)^{2}-0-0 \\
y_{C}=\frac{K c^{2} d^{2}(c-d)}{2 L^{3} E I}
\end{gathered}
$$

Example 5. A beam $A B$, which has a constant flexural rigidity $E I$, a fixed support at B, and a roller support at C, is loaded as shown in Fig. 7, where $M_{0}=3 w L^{2}$. Determine (a) the slope θ_{A} and deflection y_{A} at A, (b) the vertical reaction force \mathbf{C}_{y} and the slope θ_{C} at C.

Fig. 7: Propped cantilever beam carrying loads
Solution. This beam is statically indeterminate to the first degree. There is no need to divide this beam into two segments for analysis in the solution by the proposed new approach. We can simply treat the vertical reaction force $\mathbf{C} y$ at C as an unknown applied concentrated force directed upward and regard the beam $A B$ as one that has a total length of $2 L$, which is to be used as the value for the parameter L in the general formulas in Eqs. (9) through (12). The boundary conditions of this beam reveal that the slope and deflection at B are both equal to zero, the shear force at A is zero, the moment at A is $-3 w L^{2}$, and the deflection at C is zero. Applying the general formulas in Eqs. (11), (12), and (10), in that order, to the entire beam, we write

$$
\begin{aligned}
& 0=\theta_{A}+0+\frac{-3 w L^{2}(2 L)}{E I}-\frac{-C_{y}}{2 E I}(2 L-L)^{2}+0-\frac{4 w+0}{24 E I}(2 L-L)^{3} \\
& 0=y_{A}+\theta_{A}(2 L)+0+\frac{-3 w L^{2}(2 L)^{2}}{2 E I}-\frac{-C_{y}}{6 E I}(2 L-L)^{3}+0 \\
&-\frac{5 w+0}{120 E I}(2 L-L)^{4} \\
& 0=y_{A}+\theta_{A} L+0+\frac{-3 w L^{2}}{2 E I}\left(L^{2}\right)-0+0-0-0
\end{aligned}
$$

The above three simultaneous equations yield

$$
\theta_{A}=\frac{179 w L^{3}}{48 E I} \quad y_{A}=-\frac{107 w L^{4}}{48 E I} \quad C_{y}=\frac{39 w L}{8}
$$

Consistent with the defined sign conventions, we report that

$$
\theta_{A}=\frac{179 w L^{3}}{48 E I} \quad y_{A}=-\frac{107 w L^{4}}{48 E I} \quad \mathbf{C}_{y}=\frac{39 w L}{8} \uparrow
$$

The position C is located at $x=L$. Applying the general formula in Eq. (9) to the entire beam and, at the same time, utilizing the preceding solutions for θ_{A}, we write

$$
\begin{gathered}
\theta_{C}=\theta_{A}+0+\frac{-3 w L^{2}}{E I}(L)-0+0-0-0 \\
\theta_{C}=\frac{35 w L^{3}}{48 E I}
\end{gathered}
$$

Example 6. A combined beam (Gerber beam), with a constant flexural rigidity $E I$, fixed supports at its ends A and D, a hinge connection at B, and carrying a concentrated force \mathbf{P} at C, is given in Fig. 8. Determine (a) the vertical reaction force \mathbf{A}_{y} and the reaction moment \mathbf{M}_{A} at A, (b) the deflection y_{B} of the
hinge at B, (c) the slopes $\theta_{B L}$ and $\theta_{B R}$ just to the left and just to the right of the hinge at B, respectively, and (d) the slope θ_{C} and the deflection y_{C} at C.

Fig. 8: Fixed-ended beam with a hinge connector
Solution. This beam is statically indeterminate to the first degree. Nevertheless, because of the discontinuity in slope at the hinge connection B, this beam needs to be divided into two segments $A B$ and $B D$ for analysis in the solution. The boundary conditions of this beam reveal that slope and deflection at A and D are all equal to zero.

Fig. 9: Free-body diagram for segment $A B$ and its deflections
Applying the general formulas in Eqs. (11) and (12), successively, to segment $A B$, as shown in Fig. 9, we write

$$
\begin{gather*}
\theta_{B L}=0+\frac{A_{y} L^{2}}{2 E I}+\frac{M_{A} L}{E I}-0+0-0 \tag{a}\\
y_{B}=0+0+\frac{A_{y} L^{3}}{6 E I}+\frac{M_{A} L^{2}}{2 E I}-0+0-0 \tag{b}
\end{gather*}
$$

For equilibrium of segment $A B$, we write

$$
\begin{array}{lc}
+\uparrow \Sigma F_{y}=0: & A_{y}-B_{y}=0 \\
+\cup \Sigma M_{B}=0: & -M_{A}-L A_{y}=0 \tag{d}
\end{array}
$$

Fig. 10: Free-body diagram for segment $B D$ and its deflections
Applying the general formulas in Eqs. (11) and (12), successively, to segment $B D$, as shown in Fig. 10, we write

$$
\begin{gather*}
0=\theta_{B R}+\frac{B_{y}(2 L)^{2}}{2 E I}+0-\frac{P}{2 E I}(2 L-L)^{2}+0-0 \tag{e}\\
0=y_{B}+\theta_{B R}(2 L)+\frac{B_{y}(2 L)^{3}}{6 E I}+0-\frac{P}{6 E I}(2 L-L)^{3}+0-0 \tag{f}
\end{gather*}
$$

For equilibrium of segment $B D$, we write

$$
\begin{array}{lc}
+\uparrow \Sigma F_{y}=0: & B_{y}-P-D_{y}=0 \\
+\cup \Sigma M_{B}=0: & -L P-2 L D_{y}+M_{D}=0 \tag{h}
\end{array}
$$

The above eight simultaneous equations yield

$$
\begin{gathered}
A_{y}=\frac{5 P}{18} \quad B_{y}=\frac{5 P}{18} \quad M_{A}=-\frac{5 P L}{18} \\
\theta_{B L}=-\frac{5 P L^{2}}{36 E I} \quad \theta_{B R}=-\frac{P L^{2}}{18 E I} \\
D_{y}=-\frac{13 P}{18} \quad M_{D}=-\frac{4 P L}{9} \quad y_{B}=-\frac{5 P L^{3}}{54 E I}
\end{gathered}
$$

Consistent with the defined sign conventions, we report that

$$
\begin{array}{rc}
\mathbf{A}_{y}=\frac{5 P}{18} \uparrow & \mathbf{M}_{A}=\frac{5 P L}{18} \cup \quad y_{B}=-\frac{5 P L^{3}}{54 E I} \\
\theta_{B L}=-\frac{5 P L^{2}}{36 E I} & \theta_{B R}=-\frac{P L^{2}}{18 E I}=-\frac{2 P L^{2}}{36 E I}
\end{array}
$$

The position C is located at $x=L$ in Fig. 10. Applying the general formulas in Eqs. (9) and (10), successively, to the segment $B D$ in this figure and, at the same time, utilizing the preceding solutions for $\theta_{B R}$ and B_{y}, we write

$$
\begin{gathered}
\theta_{C}=\theta_{B R}+\frac{B_{y}}{2 E I}\left(L^{2}\right)+0-\frac{P}{2 E I}(0)^{2}+0-0-0 \\
\theta_{C}=\frac{P L^{2}}{12 E I} \\
y_{C}=y_{B}+\theta_{B R} L+\frac{B_{y}}{6 E I}\left(L^{2}\right)+0-\frac{P}{6 E I}(0)^{3}+0-0-0 \\
y_{C}=-\frac{11 P L^{3}}{108 E I}
\end{gathered}
$$

Based on the preceding solutions, the deflections of the combined beam $A D$ may be illustrated as shown in Fig. 11.

Fig. 11: Deflections of the beam $A D$

CONCLUDING REMARKS

This paper presents the formulation of a new approach to analyzing statically indeterminate reactions at supports, as well as the slopes and deflections, of beams. A set of four general formulas, derived using singularity functions, is used as the basic tools for providing the material equations, besides the equations of static equilibrium, for the solution of indeterminate reactions, slopes, and reactions at supports of beams. These formulas are expressed in terms of (a) a bending moment and a shear force at the left, as well as at the right, end of the beam, (b) a concentrated force, as well as a concentrated moment, somewhere on the beam; and (c) a uniformly, as well as a linearly varying, distributed force over a portion of the beam.

The proposed approach depends heavily on a collection of material formulas. In a way, it is a method of formulary. It allows one to treat unknown reactions at supports (even supports not at the ends of a beam) as concentrated forces or moments. A
beam needs to be divided into separate segments for study only if (a) it contains segments of different flexural rigidities, and (b) it is a combined beam having discontinuities in slope at hinge connections between segments. Note that L in the general formulas represents the total length of the beam segment, to which the general formulas are to be applied.

REFERENCES

[1] Westergaard, H. M., "Deflections of Beams by the Conjugate Beam Method," Journal of the Western Society of Engineers, Volume XXVI, Number 11, 1921, pp. 369-396.
[2] Timoshenko, S., and G. H. MacCullough, Elements of Strength of Materials, Third Edition, D. Van Nostrand Company, Inc., New York, NY, 1949, pp.179-181.
[3] Singer, F. L., and A. Pytel, Strength of Materials, Fourth Edition, Harper \& Row, Publishers, Inc., New York, NY, 1987, pp. 228-232.
[4] Beer, F. P., E. R. Johnston, Jr., and J. T. DeWolf, Mechanics of Materials, Fourth Edition, The McGraw-Hill Companies, Inc., New York, NY, 2006.
[5] Pytel, A., and J. Kiusalaas, Mechanics of Materials, Brooks/Cole, Pacific Grove, CA, 2003.
[6] Gere, J. M., Mechanics of Materials, Sixth Edition, Brooks/Cole, Pacific Grove, CA, 2004.
[7] Shigley, J. E., Mechanical Engineering Design, Fourth Edition, McGraw-Hill Company, New York, NY, 1983, pp. 45-48.
[8] Crandall, S. H., C. D. Norman, and T. J. Lardner, An Introduction to the Mechanics of Solids, Second Edition, McGraw-Hill Company, New York, NY, 1972, pp. 164172.

