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Using a Single Equation to Account for All Loads on a Beam  

in the Method of Double Integration: a Caveat 
 

 

 

Abstract 

 

When the method of double integration is applied to determine deflections of beams, one has the 

option of using a single equation containing singularity functions to effectively account for both 

concentrated and distributed loads on the entire beam without dividing the beam into multiple 

segments for integrations. This option is a right way and an effective approach to start the solu-

tion for the problem if the beam is a single piece of elastic body with constant flexural rigidity. 

However, this option becomes a wrong way and a misconception that will lead to a set of wrong 

answers if there exists in the beam (e.g., a combined beam) a discontinuity in slope or flexural 

rigidity. Unsuspecting beginners tend to miss the subtlety that a singularity function, like other 

functions, must have no discontinuity in slope if it is to be integrated or differentiated in its do-

main. Here, the domain lies along the beam. Since rudiments of singularity functions are a pre-

requisite background for sensible reading of this paper, they are included as a refresher. The pur-

pose of this paper is to share with educators and practitioners in mechanics a caveat in analyzing 

hinge-connected beams – a pitfall into which beginners often tumble. 
 

 

I.  Introduction 

 

There are several established methods for determining deflections of beams in mechanics of ma-

terials. They include the following:
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 (a) method of double integration (with or without the use 

of singularity functions), (b) method of superposition, (c) method using moment-area theorems, 

(d) method using Castigliano’s theorem, (e) conjugate beam method, and ( f ) method using gen-

eral formulas. Naturally, there are advantages and disadvantages in using any of the above meth-

ods. By and large, the method of double integration is a frequently used method in determining 

slopes and deflections, as well as statically indeterminate reactions at supports, of beams. With-

out use of singularity functions, the method of double integration has an advantage of needing a 

prerequisite in mathematics only up to simple calculus. However, it has the following drawback: 

it requires dividing a beam into multiple segments for separate integrations and studies whenever 

the beam carries concentrated forces or concentrated moments. This means that more constants 

of integration will be generated in the process of solution, and more boundary conditions will 

need to be identified and imposed to provide the needed number of equations for the solution. 

 

In this paper, attention is focused on the method of double integration with the use of singularity 

functions. Mastery of the definition, integration, and differentiation of singularity functions, 

besides simple calculus, is a prerequisite for readers of this paper. For the benefit of a wider 

readership, a refresher on singularity functions is included in this paper. Readers, who are famil-

iar with the sign conventions in mechanics of materials and the use of singularity functions, may 

skip the refresher on the rudiments in the early part (Sects. II and III) of this paper. 



II.  Sign Conventions for Beams 

 

In the analysis of beams, it is important to adhere to the generally agreed positive and negative 

signs for loads, shear forces, bending moments, slopes, and deflections of beams. The free-body 

diagram for a beam ab carrying loads is shown in Fig. 1. The positive directions of shear forces 

a  and bV , moments aM  and bM , at ends a and b of the beam, the concentrated force P and 

concentrated moment K, as well as the distributed loads, are illustrated in this figure. 
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Figure 1.  Positive directions of shear forces, moments, and applied loads 
 

 
 

In general, we have the following sign conventions for shear forces, moments, and applied loads: 
 

ﾐ A shear force is positive if it acts upward on the left (or downward on the right) face of the 

beam element (e.g.,  at the left end a, and  at the right end b in Fig. 1). a b

ﾐ At ends of the beam, a moment is positive if it tends to cause compression in the top fiber of 

the beam (e.g.,  at the left end a, and at the right end b in Fig. 1). 

V V

aM bM
 

ﾐ Not at ends of the beam, a moment is positive if it tends to cause compression in the top fiber 

of the beam just to the right of the position where it acts (e.g., the concentrated moment K in 

Fig. 1). 
 

ﾐ A concentrated force or a distributed force applied to the beam is positive if it is directed 

downward (e.g., the concentrated force P, the uniformly distributed force with intensity , 

and the linearly varying distributed force with highest intensity  in Fig. 1). 
0w

1w
 

 

Furthermore, we adopt the following sign conventions for deflection and slope of a beam: 
 

ズ A positive deflection is an upward displacement. 
 

ズ A positive slope is a counterclockwise angular displacement. 
 

 

III.  Singularity functions 
 

As in most textbooks, the argument of a singularity function in this paper is enclosed by angle 

brackets (i.e., < >), while the argument of a regular function is enclosed by parentheses [i.e., ( )]. 

The rudiments of singularity functions are summarized as follows:
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Equations (2) and (3) imply that, in using singularity functions for beams, we take 
 
 

                                                             0 1     for     0b b? ‡  (9) 
 
 

                                                             0 0     for     0b b? >  (10) 
 

 

Referring to the beam ab in Fig. 1, we may, for illustrative purposes, employ the rudiments of 

singularity functions and observe the defined sign conventions for beams to write the loading 

function q, the shear force V, and the bending moment M for of this beam as follows:
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Any beam element of differential width dx at any position x may be perceived to have a left face 

and a right face. Note that Eqs. (11) through (13) are written for the quantities q, V, and M acting 

on the left face of the beam element at any position x, and we have 0 ø x < L. Therefore, 

 even though 0x L/ > x L›  at the right end of beam. By the definition in Eq. (3), the values of 

the terms , as well as the integrals of these terms, are always zero 

for the beam. This is why these terms are trivial and may simply be omitted in the expression for 

the loading function q in Eq. (11). For further illustration of singularity functions, see Example 1. 

1
b bV x L M x L// > / @ / > / @ 2/



Example 1.  A cantilever beam AD having a constant flexural rigidity EI carries a concentrated 

force P, a concentrated moment K, and a uniformly distributed load of intensity  as shown in 

Fig. 2, where  and . Applying the method of double integration with use 

of singularity functions, determine the slope 

0w

0  w L?P fi 2
0w L?K R

As  and the deflection  of the free end A of this 

beam. 
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Figure 2.  Cantilevered beam with concentrated and distributed loads 
 

 

Solution:  We first write the loading function q, the shear force V, and the bending moment M 

for the entire beam as follows: 
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Double integration of the last equation leads to 
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Imposition of boundary conditions on the beam yields 
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Using the given value of P and K and solving the above two simultaneous equations, we write 
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Substituting the above solutions into foregoing equations for EIy|  and EIy , we write 
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IV.  Analysis of a Hinge-Connected Beam: Wrong and Right Ways 
 

Employing singularity functions, one can often use a single equation to account for all loads act-

ing on the entire beam [e.g., Eqs. (11), (12), and (13) for the loads shown in Fig. 1]. However, 

most textbooks for mechanics of materials or mechanical design do not provide explicit warning 

that one cannot use a single equation containing singularity functions to blaze the various loads 

on the entire beam when the beam under loading has a discontinuity in its slope. In fact, even 

singularity functions cannot be exempt from the rule that a well-behaved function must have 

continuous slope in its domain if it is to be integrated or differentiated in that domain. For a 

beam, the domain lies along the beam. If a beam is composed of two or more segments that are 

connected by hinges (as in a Gerber beam), then the beam has discontinuity in slope at the hinge 

connections when loads are applied to act on the beam. In such a case, the deflections and any 

statically indeterminate reactions must be analyzed by dividing the beam into segments, each of 

which must have no discontinuity in slope. Otherwise, erroneous results will be reached. 

 

Example 2.  A beam AE with a hinge connector at C carries a concentrated force P at D and is 

supported as shown in Fig. 3, where the segments AC and CE have the same flexural rigidity EI. 

An unsuspecting beginner, who tries to apply the method of double-integration with the use of 

singularity functions, arrived at a set of wrong answers for (a) the reaction moment  and the 

vertical reaction force at A, and (b) the vertical reaction force  at B. What may be the 

likely wrong way taken by this person? 
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Figure 3.  Hinge-connected beam with a fixed end and two simple supports 
 

 

 

Solution – wrong way:  Let us assume that this person has drawn a correct free-body diagram of 

the beam, as shown in Fig. 4, in the beginning of the solution. 
 

 
 

 
 

Figure 4.  Free-body diagram with assumption of positive reaction forces and moments 
 
 

This beam is statically indeterminate to the first degree. Due to lack of adequate warning on the 

case of a beam with discontinuity in slope, this person is likely of the impression or opinion that, 

by employing singularity functions, one can “always” use a single equation to account for all 

loads acting on the entire beam. Therefore, this person uses singularity functions to blaze the 

loading on the free-body diagram in Fig. 4 to first write the loading function q, the shear force V, 

and the bending moment M for the entire beam as follows: 
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Double integration of the last equation leads to 
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Imposition of boundary conditions on the beam yields 
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Equilibrium of the entire beam in Fig. 4 gives 
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Solution of the above five simultaneous equations in (a) through (e) yields 
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Consistent with the defined sign conventions, this unsuspecting beginner is led to report 
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According to these seeming “answers,” which satisfy Eq. (e), the moment at C in Fig. 4 would be 
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Since the moment at a hinge must be zero (i.e., 0CM ? ), the above answers must be wrong! 
 

 
 

Example 3.  A beam AE with a hinge connector at C carries a concentrated force P at D and is 

supported as shown in Fig. 3, where the segments AC and CE have the same flexural rigidity EI. 

Show the right way to apply the method of double integration with the use of singularity func-

tions to determine for this beam (a) the reaction moment  and the vertical reaction force 

at A, (b) the vertical reaction force  at B, (c) the deflection C  of the hinge at C, (d) the 

slopes 

AM

yA yB y

CLs  and CRs  just to the left and just to the right of the hinge at C, respectively, and (e) the 

slope Ds  and the deflection Dy  at D. 



 

 
 

Figure 3.  Hinge-connected beam with a fixed end and two simple supports   (repeated) 

 

Solution – right way:  This beam is statically indeterminate to the first degree. Because of the 

discontinuity in slope at the hinge connection C, this beam needs to be divided into two segments 

AC and CE for analysis in the solution, where no discontinuity in slope exists in either segment. 
 

 
 

Figure 5.  Free-body diagram for segment AC 
 
 

The loading function , the shear force , and the bending moment ACq ACV ACM  for the segment 

AC, as shown in Fig. 5, are 
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Double integration of the last equation leads to 
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Figure 6.  Free-body diagram for segment CE 
 

 

The loading function , the shear force , and the bending moment CEq CEV CEM  for the segment 

CE, as shown in Fig. 6, are 
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Double integration of the last equation leads to 
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Imposition of boundary conditions on the beam segments AC and CE yields 
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Equilibrium for segment AC in Fig. 5 gives 
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Equilibrium for segment CE in Fig. 6 gives 
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Solution of the above eight simultaneous equations in (a) through (h) yields 
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Consistent with the defined sign conventions, we report that 
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(These answers are obtained in a right way and are different from those obtained earlier for , 

, and  in a wrong way by an unsuspecting beginner in Example 1.) 
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Substituting the above obtained values into the equations for , CEEIy ACEIy| , and , we write CEEIy|
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Based on the preceding solutions, the slopes and deflections of the hinge-connected beam AE 

may be plotted as illustrated in Fig. 7, where one can readily appreciate the different slopes CLs  

and CRs  at C. 
 

 
 

 

Figure 7.  Deflections of the beam AE 
 

 

The foregoing results and answers are obtained by the method of double integration with the use 

of singularity functions via a right way. These answers have been assessed and verified to be in 

agreement with the answers that were independently obtained for a problem involving the same 

beam but being solved using an entirely different method – the conjugate beam method.
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V.  Conclusion 

 

There are advantages and disadvantages in using any of the several established methods for ana-

lyzing deflections of beams. The aim of this paper is to share with educators and practitioners in 

mechanics a caveat to avoid a common unsuspected pitfall when applying the method of double 

integration with the use of singularity functions to solve problems involving slopes and deflec-

tions, as well as statically indeterminate reactions at supports, of beams. The paper is not written 

to advocate this particular method over other established methods. 

 

For the benefit of a wider readership, the paper goes over the sign conventions for beams and the 

rudiments of singularity functions as applied to the analysis of beams. Most textbooks for me-

chanics of materials or mechanical design do not adequately warn readers about the limitations 



of singularity functions and the pitfall in the case of hinge-connected beams, where discontinuity 

in slope of the beam exists. Beginning students tend to be of the impression that singularity func-

tions are a powerful mathematical tool that will enable them to use a single equation to account 

for both concentrated and distributed loads on the entire beam without the need to divide it into 

segments for analysis in all cases. Such an impression is a correct one if the beam is a single 

piece of elastic body that has a constant flexural rigidity, but it is a misconception for the analy-

sis of a hinge-connected beam. Thus, a hinge-connected beam is a pitfall into which unsuspect-

ing persons often tumble. 

 

It is emphasized in the paper that singularity functions cannot be exempt from the mathematical 

rule that requires a function to have continuous slope in a domain if it is to be integrated or dif-

ferentiated in that domain. Here, the domain lies along the beam. The paper includes illustrative 

examples to demonstrate both wrong and right ways in using singularity functions in the method 

of double integration to solve a problem involving a hinge-connected beam. In general, deflec-

tions and any statically indeterminate reactions associated with a hinge-connected beam must be 

analyzed by dividing the beam into segments, as required, where each segment must have no 

discontinuity in slope. Otherwise, erroneous results will be reached. 
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