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Abstract 

 

Beams with flexural rigidity will deflect under loading. Is it possible to ascertain the deflection 

of a loaded beam in neutral equilibrium? The answer is yes according to the conjugate beam me-

thod, but a resounding no according to all other established methods. The objective of this paper 

is to share with fellow engineering educators the insights, highlights, and several illustrative ex-

amples for teaching the conjugate beam method. In particular, it is pointed out that (a) support 

conditions (or types), rather than boundary conditions, are what the conjugate beam method 

needs in finding solutions for deflections of loaded beams, (b) more support conditions than 

boundary conditions are usually known for beams in neutral equilibrium, and (c) the conjugate 

beam method often works better than other established methods in determining deflections of 

beams. It is demonstrated in this paper that the conjugate beam method does find the likely, or 

unique, deflection of a loaded beam in neutral equilibrium. 
 

 

I.  Introduction 

 

All beams considered in this paper are elastic beams, which are longitudinal members subjected 

to transverse loads and are usually in static equilibrium. A beam is in neutral equilibrium if the 

force system acting on the beam is statically balanced and the potential energy of the beam in the 

neighborhood of its equilibrium configuration is constant. 
 

             
 

                       Fig. 1  Actual beam                                            Fig. 2  Conjugate beam 
 

The beam in Fig. 1 is in neutral equilibrium and will adopt a deflected shape. Is it possible to as-

certain the deflection of a loaded beam in neutral equilibrium? The answer is yes according to the 

conjugate beam method,
1– 4

 but a resounding no according to all other established methods,
3–12

 

such as (a) method of double integration (with or without the use of singularity functions), (b) 

method of superposition, (c) method using moment-area theorems, (d) method using Castiglia-

no’s theorem, and (e) method of segments. These other methods all expect a beam to have suffi-

cient well-defined boundary conditions for use in seeking a unique solution for the deflection of 

the beam. The beam in Fig. 1 manifests only one known boundary condition (i.e., the deflection 

at the hinge support C is zero), which is simply insufficient to allow the other methods to settle 

on a unique solution. However, the conjugate beam method has no trouble with the beam in Fig. 

1. This beam manifests three support conditions (i.e., free end at A, simple support at C, and free 

end at B), which are sufficient to allow a corresponding conjugate beam to be constructed as 

shown in Fig. 2. For now, the actual beam and the conjugate beam in Figs. 1 and 2 are used to 



 

 

serve introductory purposes. Finding of the deflection of this beam in neutral equilibrium is de-

ferred to Example 5 later. 

 

The conjugate beam method was first propounded in 1921 by Westergaard.
1
 One can find brief 

presentations of this method in earlier mechanics of materials textbooks by Timoshenko and 

MacCullough
3
 and by Singer and Pytel

4
. Recently, a set of ten guiding rules to facilitate the use 

of this method was synthesized by Jong
2
 from the original paper of Westergaard.

1 
For benefit of a 

wider readership with different specialties, a brief summary of the guiding rules needed in this 

method is included. Readers, who are familiar with the rudiments of this method, may skip the 

part presented in Section II. 

 

This paper is intended to share with fellow engineering educators the insights, highlights, and 

several illustrative examples for teaching students that (a) the conjugate beam method is a natu-

ral and logical extension of the method using moment-area theorems, (b) by observing the sup-

port conditions of an actual beam (as in Fig. 1) and applying the guiding rules in this method, the 

conjugate beam for an actual beam can readily be constructed (as in Fig. 2), (c) slopes and def-

lections of an actual beam are simply obtained from the “shearing forces” and “bending mo-

ments” in the corresponding positions of the conjugate beam, (d) support conditions, rather than 

boundary conditions, are what the conjugate beam method needs in generating solutions for 

slopes and deflections of actual beams, (e) more support conditions than boundary conditions are 

usually known for beams in neutral equilibrium, and (f) the conjugate beam method can do 

whatever other established methods can do, and more, in determining deflections of beams. The 

paper demonstrates that the conjugate beam method does find the unique deflection of a loaded 

beam in neutral equilibrium. The results obtained are assessed analytically by comparison with 

well-known results in textbooks. 
 

 

II.  Guiding Rules in Conjugate Beam Method 

 

Although Westergaard
1
 propounded the conjugate beam method in a 28-page paper, earlier text-

books
3,4

 provided mainly brief and elementary presentations of this method. Without adequate 

guiding rules and a good number of typical examples, the conjugate beam method may likely 

appear as inaccessible or esoteric to many beginners. On the other hand, most beginners are plea-

santly surprised to learn that there are only two major steps in this method. The first step is to set 

up an additional beam, called conjugate beam, besides the actual beam. The second step is to de-

termine the “shearing forces” and “bending moments” in the conjugate beam using mainly 

concepts and skills in statics. In the process, these two steps are most effectively guided by the 

set of ten rules synthesized by Jong.
2
 These rules are natural and logical extensions of the method 

using moment-area theorems.
11

 They are summarized as follows: 
 

  Rule 1: The conjugate beam and the actual beam are of the same length. 
 

  Rule 2: The loading on the conjugate beam is simply the distributed elastic weight, 

which is given by the bending moment M in the actual beam divided by the flexural rigidi-

ty EI of the actual beam. (The elastic weight, M/EI, points upward if the bending moment is positive — 

to cause the top fiber in compression — in beam convention.) 
 

For each existing support condition of the actual beam, there is a corresponding support condi-

tion for the conjugate beam. The correspondence is given by rules 3 through 7 listed in Table 1, 



 

 

where a simple support is either a roller support or a hinge support, since a beam is usually not 

subjected to axial loads. 
 
 

Table 1  Corresponding support condition for the conjugate beam 
 

 Existing support condition 

of the actual beam 

Corresponding support condition 

for the conjugate beam 

Rule 3: Fixed end Free end 

Rule 4: Free end Fixed end 

Rule 5: Simple support at the end Simple support at the end 

Rule 6: Simple support not at the end Unsupported hinge 

Rule 7: Unsupported hinge Simple support 
 
 

The slope and deflection of the actual beam are obtained by employing the following rules: 
 

  Rule 8: The conjugate beam (hence its free body) is in static equilibrium. 
 

  Rule 9: The slope of (the centerline of ) the actual beam at any cross section is given by 

the “shearing force” at that cross section of the conjugate beam. (This slope is positive, or 

counterclockwise, if the “shearing force” is positive — tending to rotate the beam element clockwise — in 

beam convention.) 
 

  Rule 10: The deflection of (the centerline of ) the actual beam at any point is given by the 

“bending moment” at that point of the conjugate beam. (This deflection is upward if the “bend-

ing moment” is positive — tending to cause the top fiber in compression — in beam convention.) 
 

 

III.  Applications of Conjugate Beam Method 

 

For better understanding of the method, this section includes several detailed examples with dif-

ferent degrees of complexity and challenge. In applications of the conjugate beam method, more 

statics skills and very little explicit calculus skills are usually needed. With the guiding rules, as 

summarized in Section II, one may here see that the conjugate beam method is accessible and 

easy to apply to find deflections of beams. 

 

Example 1.  A cantilever beam AB with total length 2L and constant flexural rigidity EI carries a 

concentrated force P t at C as shown in Fig. 3. Determine (a) the slope As and deflection Ay at A, 

(b) the slope Cs and deflection Cy at C. 
 

 

 
 

Fig. 3  A cantilever beam (actual beam) 
 

 

Solution.  In accordance with rules 1 through 4 in Section II, we first construct in Fig. 4 the con-

jugate beam (i.e., the additional beam) for the actual beam in Fig. 3. Notice that the conjugate 

beam has the same length 2L as the actual beam, and it carries a linearly distributed elastic 

weight pointing downward with intensity equal to zero at C and equal to PL/EI at B.  
 



 

 

                                                                                                                                              
 

Fig. 4  Conjugate beam (additional beam) for the beam in Fig. 3 
 

 

Furthermore, notice that the actual beam in Fig. 3 has a free end at A and a fixed end at B, while 

the conjugate beam in Fig. 4 has a fixed end at A and a free end at B. Next, we draw in Fig. 5 the 

free-body diagram for the conjugate beam, where the superscript 
c
 is used to signify a quantity 

associated with the conjugate beam. Such a notation is needed for distinguishing a quantity asso-

ciated with the conjugate beam from the force or moment acting on the actual beam. 
 

 
 

Fig. 5  Free-body diagram for the conjugate beam in Fig. 4 
 

 

By rule 8 in Section II, the conjugate beam (hence its free body) is in static equilibrium. Refer-

ring to Fig. 5, we write 
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By rules 9 and 10 in Section II, the slope As and the deflection Ay at the free end A of the actual 

beam in Fig. 3 are, respectively, given by the “shearing force” 
c

AV  and the “bending moment” 
c
AM  at the fixed end A of the conjugate beam in Fig. 4. We write 
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We report that 
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Note that the slope As is counterclockwise because the “shearing force” 
c
yA  tends to rotate the 

beam element at A clockwise and is positive, while the deflection Ay is downward because the 

“bending moment” c
AM  tends to cause tension in the top fiber of the beam at A and is negative. 

Applying rules 9 and 10 in Section II and referring to Fig. 5, we determine the slope Cs and def-

lection Cy at C as follows: 
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We report that 
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These results are illustrated in Fig. 6. 

 
 

Fig. 6  Deflection of the cantilever beam in Fig. 3 
 
 

Remark: The preceding results for the cantilever beam AB in Fig. 3 are in agreement with slopes 

and deflections for cantilever beams contained in a table or an appendix of textbooks.
4,11

 

 

Example 2.  A simply supported beam AB with length L and constant flexural rigidity EI carries 

a concentrated force P t at C as shown in Fig. 7. Determine (a) the slopes As , Bs , Cs  at A, B, C; 

(b) the deflection Cy at C. 

                                                 
 

Fig. 7  A simply supported beam (actual beam) 
 

 

Solution.  The reactions at the simple supports A and B of this beam can readily be determined 

from statics equilibrium of the beam AB and are shown in the free-body diagram in Fig. 8. 
 
 

 
 

Fig. 8   Free-body diagram for the beam in Fig. 7 
 

 

Applying rules 1, 2, and 5 in Section II, we readily construct in Fig. 9 the conjugate beam for the 

actual beam in Fig. 7, where the simple supports at the ends remain unchanged and the loading 

diagram showing the distributed elastic weight on the conjugate beam is drawn by parts. 
 

 

                                                                          
 

Fig. 9  Conjugate beam (additional beam) for the beam in Fig. 7 



 

 

 

                                                                          
 

Fig. 10  Free-body diagram for the conjugate beam in Fig. 9 
 

 

 

By rule 8 in Section II, the conjugate beam (hence its free body) is in static equilibrium. Refer-

ring to Fig. 10, we write 
 

 0 :c
BM- U ?S  

1 1
0

3 2 3 9 2 3 3

c
y

L PL L L PL
LA L

EI EI

Ã Ô Ã Ô/ / © © - © © ?Ä Õ Ä Õ
Å Ö Å Ö

          
24

81
c
y

PL
A

EI
? /  

 

 0 :
c

yF‹- U ?  
1 1

0
2 3 2 3 3

c c
yy

PL L PL
A L B

EI EI
- © © / © © / ?           

2
5

81

c
y

PL
B

EI
?  

 
 

By rule 9 in Section II, slopes As  and Bs  of the actual beam at A and B are given by “shearing 

forces” c
AV  and c

BV  in the conjugate beam at A and B, respectively. We write 
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Applying rules 9 and 10 in Section II and referring to Fig. 10, we determine the slope Cs and 

deflection Cy at C as follows: 
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We report that 
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These results are illustrated in Fig. 11. 
 
 

 
 

Fig. 11  Deflection of the simply supported beam in Fig. 7 
 
 

Remark: The preceding results are in agreement with slopes and deflections for simple beams 

contained in a table or an appendix of textbooks.
4,11

 



 

 

Example 3.  A Gerber beam (Gerberbalken) with total length 4L has a hinge connection at C and 

constant flexural rigidity EI in its segments ABC and CDE. This beam is supported and loaded 

with a concentrated moment 0M S  at D as shown in Fig. 12. Determine (a) the slopes Bs , Ds , 

and Es  at B, D, and E, respectively; (b) the slope ( )C ls  just to the left of C; (c) the slope ( )C rs  

just to the right of C; (d) the deflection Cy at C; (e) the deflection Dy  at D. 
 

 
 

Fig. 12  A Gerber beam (actual beam) 
 

 

Solution.  Since the bending moment at the hinge C must be zero, we readily find that the reac-

tion force at the right end E is 0 /(2 )y M L fi?E . Clearly, this beam is statically indeterminate to 

the first degree. We note in Fig. 12 that the support conditions in the actual beam are as follows: 
 

ズ a fixed support at A,  

ズ a simple support (not at the end) at B,  

ズ an unsupported hinge at C,  

ズ a simple support at the end E.  
 

In accordance with rules 1, 2, 3, 5, 6, and 7 in Section II, we draw in Fig. 13 the conjugate beam 

for the actual beam in Fig. 12. Notice in Fig. 13 that the loading diagram showing the distributed 

elastic weight on the conjugate beam is drawn by parts. 
 

 

 
 

Fig. 13  Conjugate beam (additional beam) for the Gerber beam in Fig. 12 
 

 

Furthermore, notice in Fig. 13 that, by rules 3, 5, 6, and 7 in Section II, the support conditions in 

the conjugate beam are as follows: 
 

ズ a free end at A,  

ズ an unsupported hinge at B,  

ズ a simple support at C,  

ズ a simple support at the end E.  
 

To clearly show how this seemingly complex problem is solved, we next draw in Fig. 14 the 

free-body diagram for the conjugate beam, where the unknowns are yB , 
c
yC , and 

c
yE . 

 

 



 

 

 
 

Fig. 14  Free-body diagram for the conjugate beam in Fig. 13 

 

Note in Fig. 14 that the “bending moment” c
BM  at the hinge B must be zero. By rule 8 in Section 

II, the conjugate beam (hence its free body) is in static equilibrium. These conditions allow us to 

write the equations and solutions for the unknowns yB , 
c
yC , and 

c
yE  as follows: 
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Applying rule 9 in Section II and referring to Fig. 14, we write 
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We report that 
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Applying rule 10 in Section II and referring to Fig. 14, we determine the deflections Cy at C and 

Dy  at D as follows: 
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We report that 
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Based on these results, we can plot in Fig. 15 the deflection of the Gerber beam in Fig. 12. 
 

 

 
 

Fig. 15  Deflection of the Gerber beam in Fig. 12 
 
 

Remark: Nine of the ten guiding rules have been used in this example. The results have been 

verified by the author to be in agreement with results obtained using moment-area theorems.
11

 

"
Example 4.  A fix-ended beam AB with length L and constant flexural rigidity EI is acted on by a 

concentrated moment 0M S  at its midpoint C, and its right fixed end B is forced to shift upward 

by an amount f , without rotation, as shown in Fig. 16. Determine (a) the vertical reaction force 

yA  and the reaction moment AM  at A, (b) the vertical reaction force yB  and the reaction mo-

ment BM  at B. 
 
 

 
 

Fig. 16  Relative vertical shifting of supports in a loaded beam (actual beam) 
 

 

Solution.  The free-body diagram for this beam may be drawn as shown in Fig. 17, where the 

unknowns are yA , AM , yB , and BM . Clearly, this beam is statically indeterminate to the second 

degree. 
 



 

 

 
 

Fig. 17  Free-body diagram for the beam in Fig. 16 
 

 

For equilibrium of the actual beam, we refer to Fig. 17 to write 
 

 

 0 :yF‹- U ?  0y yA B/ ?  (a) 

 0 :BM- U ?S  0 0yA BM LA M M/ / - - ?  (b) 
 

The beam in Fig. 16 has fixed ends at A and B, but the fixed end B is forced to move upward, 

without rotation, an amount of f. This means that the conjugate beam for the actual beam must, 

by rules 1, 2, 3, and 10 in Section II, have free ends at A and B plus a counterclockwise “bending 

moment” of magnitude f acting at B, as shown in Fig. 18, where the distributed elastic weight on 

the conjugate beam is drawn by parts. 
 

                                                                                                                                             
 

Fig. 18  Conjugate beam (additional beam) for the beam in Fig. 16 
 
 

The reason we apply rule 10 in Section II to impose a counterclockwise “bending moment” of 

magnitude f acting at B in Fig. 18 is to take into account the extraordinary boundary condition of 

upward displacement of the fixed end B, without rotation, of the actual beam. [If an actual beam 

should have a specified slope (or rotation) 0s  at any point, rule 9 in Section II would, of course, 

be applied to impose a “shearing force” 0s  at that point of the conjugate beam.] 
 
 

By rule 8 in Section II, the free body of the conjugate beam in Fig. 18 is in static equilibrium – 

without any support in space. We refer to this figure to get the two needed additional equations: 
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Solving the preceding Eqs. (a) through (d) simultaneously, we obtain 
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From these results and the assumed directions of forces and moments in Fig. 17, we report that 
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Remark: Equations (c) and (d) in this example can be obtained by imposing the conditions 

/ 0A Bs ?  (for the relative angle between the two tangents drawn at points A and B of the beam) 

and /B At f?  (for the tangential deviation of point B with respect to the tangent drawn at point A 

of the beam), respectively, in the method using moment-area theorems.
11

 Clearly, the same re-

sults in this example are what will be obtained in the method using moment-area theorems. 
 

 

Example 5.  A beam AB with total length 2L and constant flexural rigidity EI is supported on a 

single simple support at its midpoint C as shown in Fig. 19. The beam is in neutral equilibrium 

because it carries a concentrated moment 0M S at A and a concentrated force P t at B, where 

0 /P M L? . Determine (a) the slope As and deflection Ay at A, (b) the slope Bs and deflection By at 

B, (c) the slope Cs at C. 
 

                                                                                                                                                                  
 

Fig. 19  Actual beam — in neutral equilibrium — (repeat of Fig. 1) 
 

 
 

Solution.  This example employs the beam in Fig. 1, which was used earlier for introductory 

purposes. The problem in this example cannot be tackled by any method other than the conjugate 

beam method. This beam manifests three support conditions (i.e., free end at A, simple support at 

C, and free end at B), which are sufficient to allow a corresponding conjugate beam to be con-

structed as shown in Fig. 20, which was shown as Fig. 2 earlier for introductory purposes. 
 

 

 
 

Fig. 20  Conjugate beam — for the beam in Fig. 19 — (repeat of Fig. 2) 
 
 

 

 

 
 

Fig. 21  Free-body diagram for the conjugate beam in Fig. 20 
 



 

 

To clearly show how this seemingly baffling problem is solved, we draw in Fig. 21 the free-body 

diagram for the conjugate beam, where the unknowns are c
yA , 

c

AM , c
yB , and 

c
BM . 

 

By rule 8 in Section II, the free body in Fig. 21 is in static equilibrium. Moreover, the “bending 

moment” at the hinge C in Fig. 21 must be zero. These conditions allow us to write 
 

      
- ‹"UFy

c ? 0 , for the entire conjugate beam ACB in Fig. 21: 

                                                      0 0 0
2

c c
y y

M L M L
A B

EI EI
/ / / ?  (a) 

0c

CM- U ?S , for just segment AC — the left segment of the conjugate beam in Fig. 21: 

                                                      0 0
2

c c
yA

L M L
M L A

EI
/ / - © ?  (b) 

0
c

CM- U ?S , for just segment CB — the right segment of the conjugate beam in Fig. 21: 

                                                        0 0
3 2

c c
yB

L M L
M L B

EI
/ / © ?  (c) 

 

The above three equations contain four unknowns: c
yA , 

c

AM , c
yB , and 

c
BM . Thus, we are faced 

with a problem involving a conjugate beam that is statically indeterminate to the first degree. The 

statical indeterminacy of the conjugate beam in Fig. 20 can, of course, be resolved by using any 

of the established methods. 
 

Let us choose to employ the conjugate beam method further to generate the needed additional 

equation to go with the preceding three equations (a), (b), and (c) for solving the problem in this 

example. For simplicity, the “flexural rigidity” of each segment of the conjugate beam in Fig. 20 

may be taken as equal to 1 unit. By drawing the “elastic weight” by parts, we construct in Fig. 22 

the “conjugate beam” for the conjugate beam in Fig. 20. Note that such a “conjugate beam” as 

shown in Fig. 22 has free ends at A and B and a single simple support at its midpoint C. 
 
 

 

 
 

Fig. 22  “Conjugate beam” for the conjugate beam in Fig. 20 
 

 

By rule 8 in Section II, the “conjugate beam” in Fig. 22 must be in static equilibrium. Similar to 

the original actual beam in Fig. 19, the “conjugate beam” in Fig. 22 turns out to be also in neutral 

equilibrium. Using the superscripts 
cc

 to refer to the “conjugate beam” for the conjugate beam 

and referring to Fig. 22, we write  
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Note that Eq. (d) is the additional equation needed to go with the preceding Eqs. (a), (b), and (c) 

to resolve the statical indeterminacy mentioned above. 
 

 

 
 

Fig. 23  “Deflection” of the conjugate beam in Fig. 20 
 

 

The raison d’être for the above obtained Eq. (d) may briefly be examined. When the conjugate 

beam under elastic weight in Fig. 20 deflects, it will adopt a shape as illustrated in Fig. 23. Those 

familiar with the method using moment-area theorems
11

 will readily perceive that the tangential 

deviation /C Bt of point C with respect to the tangent drawn at point B is equal to the tangential 

deviation /C At of point C with respect to the tangent drawn at point A; i.e., 
 

/ /C B C At t?  
 

According to the second moment-area theorem,
11

 the tangential deviation /C Bt is equal to the 

first moment, taken counterclockwise about point C, of the “elastic weight” between points B and 

C in Fig. 22. Meantime, the tangential deviation /C At is equal to the first moment, taken clockwise 

about point C, of the “elastic weight” between points A and C in Fig. 22. By transposing terms in 

the above equation, we see that 

/ / 0C A C Bt t/ - ?  
 

By carrying out the second moment-area theorem for terms in this equation, we see that this 

equation leads to the same equation as Eq. (d) above. Thus, applying the conjugate beam method 

to further study the statically indeterminate conjugate beam in Fig. 20 is sound and well. 
 

 

Solving the preceding Eqs. (a) through (d) simultaneously for the four unknowns in them, we get 
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Using these results and applying rules 9 and 10 in Section II, we can refer to Fig. 21 and write 
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For the loaded beam in neutral equilibrium in Figs. 1 and 19, we report that 
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Based on these results, we depict in Fig. 24 the deflection of the actual beam in Figs. 1 and 19. 
 

 

 
 

Fig. 24  Deflection of the actual beam in Figs. 1 and 19 
 

 

Remark: Since the problem in this example cannot be solved by any other methods, no direct 

comparison of the preceding results can be made. Nonetheless, assessment of these results is 

possible as presented in Section IV. 
 

 

IV.  Assessment of Results Obtained in Example 5 
 

Let us refer to both Fig. 19 and Fig. 24. Since we have obtained the slope Cs  for the tangent 

A†CB† drawn at C in Fig. 24, we may perform an analytical check of the solutions by regarding 

the deflected shape of this beam AB as the elastic curve of two cantilever beams:  
 

ﾐ a cantilever beam CA† with length L, fixed at C, which is deflected from CA† to CA| by a 

concentrated moment 0M S at A|| ;  
 

ﾐ a cantilever beam CB† with length L, fixed at C, which is deflected from CB† to CB| by a 

concentrated force P t at B|| , where 0 /P M L? .  
 

 

For ease of reference, we repeat the beam and the results as shown below. 
 

 

                                                                                                                                          
 

Fig. 19  Actual beam — in neutral equilibrium — (repeat of Fig. 1) 
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From the geometry in Fig. 24 and the results as shown, we find the following: 
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We have 
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We note that the above values for A A† | , /A Cs , B B† | , and /B Cs  are all in agreement with those 

found in a table or an appendix of textbooks
4,11

 for the deflection and slope of the free end of a 

cantilever beam loaded at its free end with (a) a concentrated moment 0M , (b) a concentrated 

force P, respectively.  
 

Note that no rigorous experimental results for deflections of beams in neutral equilibrium are 

readily available. In the absence of any available results for direct comparison, the foregoing 

agreeable assessment may be taken as a “pat on the back” for the efforts and results obtained in 

solving a baffling problem in Example 5.  
 

 

V.  Concluding Remarks 

 

This paper is written to share with fellow engineering educators the insights, highlights, and five 

detailed illustrative examples for teaching the conjugate beam method. It is pointed out that more 

support conditions than boundary conditions are usually known for beams in neutral equilibrium. 

The conjugate beam method can readily handle the following five basic support conditions (or 

types): (i) fixed end, (ii) free end, (iii) simple support at the end, (iv) simple support not at the 

end, and (v) unsupported hinge. Furthermore, rules 9 and 10 in Section II can readily be applied 

to address extraordinary boundary conditions, where specific values for slopes and deflections 

are present or stipulated in the problem. This is a versatile feature inherent in the guiding rules 

for the conjugate beam method, as illustrated in Example 4. 

 

Besides being able to correctly find solutions for complex as well as simple problems of deflec-

tions of beams, as illustrated in Examples 1 through 4, the conjugate beam method stands out as 

the only method that is able to pursue and yield the solution for the deflection of a loaded beam 

in neutral equilibrium, as illustrated in Example 5. This method is unique and outstanding. The 



 

 

root cause contributing to this rather unusual scenario lies in the use of support conditions in 

the conjugate beam method versus the use of boundary conditions in all other methods. 

 

In using the conjugate beam method, more statics skills and very little explicit calculus skills are 

usually needed. When the support conditions of a beam are properly recognized and taken into 

account by using the guiding rules in the conjugate beam method, the boundary conditions will, 

of course, be satisfied automatically! In other words, all solutions generated by the conjugate 

beam method have satisfied the boundary conditions in the beginning stages of the solutions. The 

conjugate beam method has been demonstrated in this paper to do a job as good as or better than 

other established methods in determining deflections of beams. 

 

For years, the author has taught the conjugate beam method, in addition to the established me-

thods using double integration and moment-area theorems, in his own class of mechanics of ma-

terials at his home institution, where the students have been provided with the 10 Guiding Rules 

in Conjugate Beam Method on a single page. Overwhelmingly, his students favor the conjugate 

beam method over the other methods in determining deflections of beams. 
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