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This paper is intended to contribute an alternative approachÐmethod of model formulasÐto
finding statically indeterminate reactions and deflections of elastic beams under loading. A set of
four equations are first derived and then employed as model formulas. These formulas account for
the flexural rigidity of the beam, concentrated loads, and linearly distributed loads. Thus, the
proposed method of model formulas can effectively be applied to solve most beam problems
involving reactions and deflections, encountered in the teaching of mechanics of materials and in
engineering practice. A variety of examples are included in the paper.
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NOMENCLATURE

L total length of beam ab to which model
formulas are to be applied

EI flexural rigidity of beam ab
q loading function accounting for all loads

acting on beam ab
V shear force at position x of beam ab
Va shear force at left end a (x � 0) of beam ab
Vb shear force at right end b (x � L) of beam

ab
M bending moment at position x of beam ab
Ma bending moment at left end a (x � 0) of

beam ab
Mb bending moment at right end b (x � L) of

beam ab
P concentrated force at x � xP

K concentrated moment at x � xK

w0 beginning intensity of a distributed force
at x � xw

w1 ending intensity of a distributed force at
x � uw

m0 intensity of a uniformly distributed
moment beginning at x � xm and ending
at x � um

�a slope of beam at its left end a (x � 0)
�b slope of beam at its right end b (x � L)
y0 slope of beam at position x
ya deflection of beam at its left end a (x � 0)
yb deflection of beam at its right end b

(x � L)
y deflection of beam at position x
< ::: > angle brackets enclosing argument . . . of a

singularity function; cf., Equations (1)±(4)

INTRODUCTION

ALL BEAMS CONSIDERED in this paper are
elastic beams, which are longitudinal members
subjected to transverse loads. The major methods
established for determining deflections of beams in
mechanics of materials may include: (a) the
method of double integration (with or without the
use of singularity functions), (b) the method of
superposition, (c) the method using moment±area
theorems, (d) the method using Castigliano's theo-
rem, (e) the conjugate beam method, and (f) the
method of segments. These methods have been
described in the literature and textbooks [1±12].

This paper significantly extends the main idea in
the method of segments, as presented in [9], and
does much to generalize earlier established formu-
las [4, 10] into general model formulas for studying
beam reactions and deflections. The prerequisite to
effective understanding and application of the
alternative approachÐthe method of model
formulasÐproposed in this paper is a basic famil-
iarity with the rudiments of singularity functions.
Compared with the published method of segments
[9], the proposed method has many advantages;
e.g., there is a drastic reduction in the number of
beam segments and resulting simultaneous equa-
tions involved in studying the beams whenever
multiple concentrated loads or linearly distributed
loads are found somewhere on the beam. The
proposed method offers an independent and effec-
tive method for mechanics educators and practi-
tioners when it comes to determining reactions and
deflections of beams. Therefore, this paper contri-
butes to the expansion of one's list of analytical
tools and effective means of performing indepen-
dent assessment or checking the solutions for beam

* Accepted 14 May 2008.

65

Int. J. Engng Ed. Vol. 25, No. 1, pp. 65±74, 2009 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2009 TEMPUS Publications.



problems that have been obtained by other
methods [1±12].

In sharp contrast to the method of segments [9],
which does not use singularity functions, the
proposed method emerges as superior because
one rarely needs to divide a beam into multiple
segments for study and the method is not prone to
generating inordinate numbers of simultaneous
equations in the solution of beam problems, even
if any of the following conditions exist:

. The beam carries multiple concentrated loads
(forces or moments).

. The beam has one or more simple supports not
at its ends.

. The beam has linearly distributed loads not
starting at its left end.

. The beam has linearly distributed loads not
ending at its right end.

For instance, if we fast forward to Example 1, given
in this paper, for a moment, we see that the method
of model formulas can treat the entire beam in this
example as just one segment AB and can involve
only the solution of two simultaneous equations in
finding the values for the two unknowns: �A and yA.
However, if the method of segments as presented in
[9] was employed, these two unknowns in the
example would need to be solved in conjunction
with the solving of another ten unknowns: �C , yC ,
VC , MC , �D, yD, VD, MD, VB, and MB as a package.
In other words, the method of segments is much
less efficient: it requires dividing the beam AB into
three segments, AC, CD, and DB, to generate
twelve simultaneous equations (six material equa-
tions plus six equilibrium equations) for solving the
twelve unknowns before the values for �A and yA

could finally be found. In fact, if the other exam-
ples in this paper were to be solved with the method
of segments [9], large sets of simultaneous equa-
tions would have to be generated and solved.

For the benefit of a wider readership who may
have a variety of specialties in mechanics and to
avoid or minimize any possible misunderstandings,
this paper briefly goes over the adopted sign
conventions and relevant singularity functions for
beams. Readers, who are familiar with the rudi-
ments of beams and singularity functions, may skip
the next two section of this paper. The application
of the model formulas is direct and requires no
integration or writing of continuity equations.
These model formulas can readily be extended to
the analysis of beams that have discontinuity in
slope (e.g., at hinge connections) or in flexural
rigidity (e.g., in stepped beams) by dividing the
beam into segments, where each segment has no
such discontinuity, as demonstrated in Example 7.
In the event of a nonlinearly distributed load acting
on the beam, the model formulas in this paper can,
of course, be modified by the user for a specific
nonlinearly distributed load.

SIGN CONVENTIONS FOR BEAMS

The free-body diagram for a beam ab that has a
constant flexural rigidity EI and carries selected
typical loads is shown in Fig. 1. Generally, the sign
conventions for shear forces, moments, and
applied loads acting on a beam are as follows:

. A shear force is positive if it acts upward on the
left (or downward on the right) face of the beam
element (e.g., Va at the left end a, and Vb at the
right end b in Fig. 1).

. At the ends of the beam, a moment is positive if it
tends to cause compression in the top fiber of the
beam (e.g., Ma at the left end a, and Mb at the
right end b in Fig. 1).

. If not at ends of the beam, a moment is positive if
it tends to cause compression in the top fiber of

Fig. 1. Positive directions of shear forces, moments, and applied loads.
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the beam just to the right of the position where it
acts (e.g., the concentrated moment K � K
and the uniformly distributed moment with
intensity m0 in Fig. 1).

. A concentrated force or a distributed force applied
to the beam is positive if it is directed downward
(e.g., the concentrated force P � P #, the linearly
distributed force with intensity w0 on the left side
and intensity w1 on the right side in Fig. 1, where
the distribution becomes uniform if w0 � w1).

As shown in Fig. 2, we adopt the following sign
conventions for slope and deflection of a beam:

. A positive slope is a counterclockwise angular
displacement (e.g., �a and �b in Fig. 2).

. A positive deflection is an upward linear displa-
cement (e.g., ya and yb in Fig. 2).

SINGULARITY FUNCTIONS

As in most textbooks, the argument of a singu-
larity function in this paper is shown enclosed by
angle brackets (i.e., < >), while the argument of a
regular function is enclosed by parentheses [i.e.,
( )]. The rudiments of singularity functions [11, 12]
are summarized as follows:

< xÿ a >n � �xÿ a�n if xÿ a � 0 and n > 0
�1�

< xÿ a >n � 1 if xÿ a � 0 and n � 0 �2�
< xÿ a >n � 0 if xÿ a < 0 �3�
< xÿ a >n � 0 if n < 0 �4�

Z x

ÿ1
< xÿ a >n dx

� 1

n� 1
< xÿ a >n�1 if n > 0 �5�

Z x

ÿ1
< xÿ a >n dx

� < xÿ a >n�1 if n � 0 �6�
d

dx
< xÿ a >n � n < xÿ a >nÿ1 if n > 0 �7�

d

dx
< xÿ a >n �< xÿ a >nÿ1 if n � 0 �8�

Equations (2) and (3) imply that, in using singu-
larity functions for beams, we take

b0 � 1 for b � 0 �9�
b0 � 0 for b < 0 �10�

DERIVATION OF MODEL FORMULAS

Using singularity functions for beams [11, 12], we
may write the loading function q, shear force V,
and bending moment M for the beam ab in Fig. 1
as follows:

q �Va < x >ÿ1 �Ma < x >ÿ2

ÿ P < xÿ xP >
ÿ1 �K < xÿ xK >ÿ2

ÿ w0 < xÿ xw >
0

ÿ w1 ÿ w0

uw ÿ xw
< xÿ xw >

1 �w1 < xÿ uw >
0

� w1 ÿ w0

uw ÿ xw
< xÿ uw >

1 �m0 < xÿ xm >ÿ1

ÿm0 < xÿ um >ÿ1 �11�

V �Va < x >0 �Ma < x >ÿ1

ÿ P < xÿ xP >
0 �K < xÿ xK >ÿ1

ÿ w0 < xÿ xw >
1

ÿ w1 ÿ w0

2 �uw ÿ xw� < xÿ xw >
2 �w1 < xÿ uw >

1

� w1 ÿ w0

2 �uw ÿ xw� < xÿ uw >
2 �m0 < xÿ xm >0

ÿm0 < xÿ um >0 �12�

M �Va < x >1 �Ma < x >0 ÿP < xÿ xP >
1

� K < xÿ xK >0 ÿw0

2
< xÿ xw >

2

ÿ w1 ÿ w0

6 �uw ÿ xw� < xÿ xw >
3 � w1

2
< xÿ uw >

2

� w1 ÿ w0

6 �uw ÿ xw� < xÿ uw >
3 �m0 < xÿ xm >1

ÿm0 < xÿ um >1 �13�
Letting the constant flexural rigidity of the beam
ab be EI, y be the deflection, y 0 be the slope, and
y 00 be the second derivative of y with respect to the
abscissa x, which defines the position of the section
of the beam under consideration, we may apply the
relation EIy 00 �M to write

Fig. 2. Slopes and deflections of a beam displaced from AB
to ab.
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EIy 00 � Va < x >1 �Ma < x >0 ÿP < xÿ xP >
1

� K < xÿ xK >0 ÿw0

2
< xÿ xw >

2

ÿ w1 ÿ w0

6 �uw ÿ xw� < xÿ xw >
3 �w1

2
< xÿ uw >

2

� w1 ÿ w0

6 �uw ÿ xw� < xÿ uw >
3 �m0 < xÿ xm >1

ÿ m0 < xÿ um >1 �14�

EIy 0 � Va

2
< x >2 �Ma < x >1 ÿ P

2
< xÿ xP >

2

� K < xÿ xK >1 ÿ w0

6
< xÿ xw >

3

ÿ w1 ÿ w0

24�uw ÿ xw� < xÿ xw >
4

� w1

6
< xÿ uw >

3

� w1 ÿ w0

24�uw ÿ xw� < xÿ uw >
4

�m0

2
< xÿ xm >2

ÿm0

2
< xÿ um >2 �C1 �15�

EIy � Va

6
< x >3 � Ma

2
< x >2

ÿ P

6
< xÿ xP >

3 � K

2
< xÿ xK >2

ÿ w0

24
< xÿ xw >

4

ÿ w1 ÿ w0

120 �uw ÿ xw� < xÿ xw >
5

� w1

24
< xÿ uw >

4

� w1 ÿ w0

120 �uw ÿ xw� < xÿ uw >
5

�m0

6
< xÿ xm >3 ÿm0

6
< xÿ um >3

� C1x� C2 �16�
The slope and deflection of the beam in Fig. 1 at its
left end a (i.e., at x = 0) are �a and ya, respectively,
as illustrated in Fig. 2. Imposition of these two
boundary conditions on Equations (15) and (16)
yields the values for the constants of integration C1

and C2 as follows:

C1 � EI�a �17�

C2 � EIya �18�
Substituting Equations (17) and (18) into Equa-
tions (15) and (16), we obtain the model formulas
for the slope y 0 and deflection y, at any position x
of the beam ab in Fig. 1, as follows:

y 0 � �a � Va

2EI
x2 �Ma

EI
xÿ P

2EI
< xÿ xP >

2

� K

EI
< xÿ xK >1 ÿ w0

6EI
< xÿ xw >

3

ÿ w1 ÿ w0

24EI �uw ÿ xw� < xÿ xw >
4

� w1

6EI
< xÿ uw >

3

� w1 ÿ w0

24EI �uw ÿ xw� < xÿ uw >
4

� m0

2EI
< xÿ xm >2 ÿ m0

2EI
< xÿ um >2 �19�

y � ya � �ax � Va

6EI
x3 � Ma

2EI
x2

ÿ P

6EI
< xÿ xP >

3 � K

2EI
< xÿ xK >2

ÿ w0

24EI
< xÿ xw >

4

ÿ w1 ÿ w0

120 EI �uw ÿ xw� < xÿ xw >
5

� w1

24 EI
< xÿ uw >

4

� w1 ÿ w0

120 EI �uw ÿ xw� < xÿ uw >
5

� m0

6 EI
< xÿ xm >3

ÿ m0

6 EI
< xÿ um >3 �20�

By letting x = L in Equations (19) and (20), we
obtain the model formulas for the slope �b and
deflection yb at the right end b of the beam ab, as
illustrated in Fig. 2, as follows:

�b � �a � VaL2

2EI
� MaL

EI
ÿ P

2EI
�Lÿ xP�2

� K

EI
�Lÿ xK� ÿ w0

6EI
�Lÿ xw�3

ÿ w1 ÿ w0

24EI �uw ÿ xw� �Lÿ xw�4

� w1

6EI
�Lÿ uw�3 � w1 ÿ w0

24EI �uw ÿ xw� �Lÿ uw�4

� m0

2EI
�Lÿ xm�2 ÿ m0

2EI
�Lÿ um�2 �21�
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yb � ya � �aL � VaL3

6EI
�MaL2

2EI
ÿ P

6EI
�Lÿ xP�3

� K

2EI
�Lÿ xK�2 ÿ w0

24EI
�Lÿ xw�4

ÿ w1 ÿ w0

120EI�uw ÿ xw� �Lÿ xw�5 � w1

24EI
�Lÿ uw�4

� w1 ÿ w0

120EI�uw ÿ xw� �Lÿ uw�5

� m0

6EI
�Lÿ xm�3 ÿ m0

6EI
�Lÿ um�3 �22�

APPLICATIONS OF MODEL FORMULAS

The preceding set of four model formulas, high-
lighted in Equations (19) through (22), forms the
basis upon which an alternative approachÐ
method of model formulasÐis established for
analyzing statically indeterminate reactions at
supports, as well as the slopes and deflections, of
beams. A beam may carry a variety of loads, as
illustrated in Fig. 1, where each type of load may
be repeated and accounted for accordingly.

Note that L in the model formulas in Equations
(19) through (22) is a parameter representing the
total length of the beam segment. In other words,
this L is to be replaced by the total length of the
beam segment, to which the model formulas are
applied. The model formulas have already
accounted for the boundary conditions of the
beam at its ends. In particular, notice that this
method allows one to treat reactions at interior
supports (i.e., those not at the ends of the beam) as
applied concentrated forces or moments, as appro-
priate. All one has to do is simply to impose the
additional boundary conditions at the points of
interior supports for the beam segment. Thus,
statically indeterminate reactions as well as slopes
and deflections of beams can be solved.

A beam needs to be divided into segments for
analysis only if (a) it is a combined beam (e.g., a
Gerber beam) having discontinuities in slope at
hinge connections between segments, and (b) it
contains segments with different flexural rigidities
(e.g., a stepped beam). The method of model
formulas proposed in this paper can best be under-
stood with illustrations. Therefore, both simple
and more challenging problems are included in
the following examples.

Example 1
A cantilever beam AB with constant flexural

rigidity EI and length L is acted on by two
concentrated forces of magnitudes P and 2P and
a concentrated moment of magnitude PL as shown
in Fig. 3. Determine the slope �A and deflection yA

at end A.

Solution
In applying the method of model formulas, we

need to follow the sign conventions as illustrated in
Figs. 1 and 2. At end A, the moment MA is zero
and the shear force VA is ÿP. At end B, the slope
�B and deflection yB are both zero. Note in the
model formulas that we have xK � L=3, K � ÿPL,
xP � 2L=3, and the concentrated force at D is 2P.
Applying the model formulas in Equations (21)
and (22), successively, to this beam as a single
segment AB, we write

0 � �A �ÿPL2

2EI
� 0ÿ 2P

2EI
Lÿ 2L

3

� �2

�ÿPL

EI
Lÿ L

3

� �
ÿ 0ÿ 0� 0� 0� 0ÿ 0

0 � yA � �AL�ÿPL3

6EI
� 0ÿ 2P

6EI
Lÿ 2L

3

� �3

�ÿPL

2EI
Lÿ L

3

� �2

ÿ0ÿ 0� 0� 0� 0ÿ 0

The preceding two simultaneous equations yield

�A � 23 PL2

18 EI
yA � ÿ 71 PL3

81 EI

We report that

�A � 23 PL2

18 EI
yA � 71 PL3

81 EI
#

Example 2
A beam AB with constant flexural rigidity EI and
length L, a fixed support at A, a roller support at
B, and carrying a linearly distributed load is shown
in Fig. 4. Determine (a) the vertical reaction
force Ay and reaction moment MA at A, (b) the
slope �B at B.

Fig. 3. Cantilever beam carrying two forces and a moment.
Fig. 4. Propped cantilever beam carrying linearly distributed

load.
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Solution
From the free-body diagram shown in Fig. 5, we
see that the beam under consideration is statically
indeterminate to the first degree. Naturally, the
method of model formulas can solve for both
statically indeterminate reactions and deflections
of beams.

The boundary conditions reveal that the slope
�A and deflection yA at A, as well as the deflection
yB at B, are all zero. We note in the model formulas
that xw � 0, uw � b, and w1 � 0. Applying the
model formulas in Equations (21) and (22), succes-
sively, to the entire beam, we write

�B � 0� AyL2

2EI
�ÿMAL

EI
ÿ 0� 0ÿ w0

6EI
L3

ÿ ÿw0

24EI b
L4 � 0� ÿw0

24EI b
�Lÿ b�4 � 0ÿ 0

0 � 0� 0� Ay L3

6EI
�ÿMAL2

2EI
ÿ 0� 0

ÿ w0

24EI
L4 ÿ ÿw0

120EI b
L5 � 0

� ÿw0

120EI b
�Lÿ b�5 � 0ÿ 0

For equilibrium of the beam in Fig. 5, we set
� �MB � 0:

MA ÿ LAy � Lÿ b

3

� �
w0 b

2

� �
� 0

The preceding three simultaneous equations yield:

Ay � w0b �20L3 ÿ 5 b2L� b3�
40L3

MA � w0b2�20L2 ÿ 15bL� 3 b2�
120L2

�B � w0 b3�5Lÿ 3b�
240LEI

We report that

Ay � w0b �20L3 ÿ 5 b2L� b3�
40L3

"

MA � w0b2�20L2 ÿ 15bL� 3 b2�
120L2

�B � w0 b3�5Lÿ 3b�
240LEI

Example 3
A fix-ended beam AB with constant flexural

rigidity EI and length L is loaded with a concen-
trated moment M0 and its right end B is shifted
upward by an amount �, without rotation, as
shown in Fig. 6. Determine (a) the vertical reaction
force Ay and the reaction moment MA at A, (b) the
deflection y of the beam at any position x.

Solution
This beam is statically indeterminate to the second
degree. At the fixed end A, the deflection yA and
slope �A are zero. At the fixed end B, the deflection
yB is �, but the slope �B is zero. Applying the model
formulas in Equations (21) and (22), successively,
to this beam, we write

0 � 0� AyL2

2EI
�MAL

EI
ÿ 0�ÿM0

EI
Lÿ L

2

� �
ÿ 0ÿ 0� 0� 0� 0ÿ 0

� � 0� 0� AyL3

6EI
�MAL2

2EI
ÿ 0

�ÿM0

2EI
Lÿ L

2

� �2

ÿ0ÿ 0� 0� 0� 0ÿ 0

The preceding two simultaneous equations yield

Ay � 3L2M0 ÿ 24 EI�

2L3
MA � 24 EI� ÿ L2M0

4L2

We report that

Ay � 3L2M0 ÿ 24 EI�

2L3
"

MA � 24 EI� ÿ L2M0

4L2

Substituting the obtained values of Ay and MA into
the model formula in Equation (20), we write

y � 0� 0� Ay

6EI
x3 �MA

2EI
x2

ÿ 0� 0ÿ 0ÿ 0� 0� 0� 0ÿ 0

y � 3 �

L2
ÿ M0

8EI

� �
x2 ÿ 2 �

L3
ÿ M0

4EIL

� �
x3

Fig. 5. Free-body diagram of the cantilever beam in Fig. 4.

Fig. 6. Relative vertical shifting of supports in a loaded beam.
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Example 4
A cantilever beam AB with constant flexural

rigidity EI and length L carries a uniformly distrib-
uted moment of intensity m0 over half of its length
L as shown in Fig. 7. Determine (a) the slope �B

and deflection yB at B, (b) the deflection y of the
beam at any position x.

Solution
The free-body diagram of the beam AB, which is

in equilibrium as shown in Fig. 8, indicates that the
beam has only a counterclockwise reaction
moment of magnitude m0L=2 at its end A besides
a uniformly distributed moment of intensity m0

over half of its length L.
Figures 7 and 8 reveal that the deflection yA,

slope �A, and the shear force Ay at end A are all
zero. At end B, the moment MB and shear force By

are both zero. Applying the model formulas in
Equations (21) and (22), successively, to this beam
and noting that xm = L/2, we write

�B � 0� 0� �ÿm0L=2�L
EI

ÿ 0� 0ÿ 0ÿ 0� 0� 0

� m0

2 EI
Lÿ L

2

� �2

ÿ 0

yB � 0� 0� 0� �ÿm0L=2�L2

2 EI
ÿ 0� 0ÿ 0ÿ 0� 0

� 0� m0

6 EI
Lÿ L

2

� �3

ÿ 0

The preceding two simultaneous equations yield

�B � ÿ 3 m0 L2

8 EI
yB � ÿ 11 m0 L3

48 EI

We report that

�B � 3 m0 L2

8 EI
yB � 11 m0 L3

48 EI
#

Substituting the obtained values of �B and yB into
the model formula in Equation (20), we write

y � 0� 0� 0�ÿm0L=2

2 EI
x2 ÿ 0� 0ÿ 0ÿ 0� 0

� 0� m0

6 EI
xÿ L

2

� �3

ÿ 0

y � ÿ m0

48 EI
12 L x2 � �2xÿ L�3
h i

Example 5
A cantilever beam AB with constant flexural

rigidity EI and length 2L is propped by a linear
spring of modulus k, and it carries a concentrated
force P at its midpoint C as shown in Fig. 9.
Determine the slope �A and deflection yA at A.

Solution
At end A of this beam, the moment MA is zero

and the shear force VA � ÿkyA, which is based on
the initial assumption that yA is upward and the
linear spring force of kyA acts downward at end A.
At end B, the slope �B and deflection yB are both
zero. Note that we need to replace the parameter L
in the model formulas in Equations (21) and (22)
with 2L for this beam AB. Letting xP = L and
applying the model formulas in Equations (21) and
(22), successively, to this beam, we write

0 � �A � �ÿkyA� �2L�2
2EI

� 0ÿ P

2EI
�2Lÿ L�2 � 0

ÿ 0ÿ 0� 0� 0� 0ÿ 0

0 � yA � �A�2L� � �ÿkyA��2L�3
6EI

� 0

ÿ P

6EI
�2Lÿ L�3 � 0ÿ 0ÿ 0� 0� 0� 0ÿ 0

The preceding two simultaneous equations yield

�A � PL2 �3EI ÿ 2 kL3�
2 EI�3EI � 8 kL3�

yA � ÿ 5PL3

2 �3EI � 8 kL3�
We report that

�A � PL2 �3EI ÿ 2 kL3�
2 EI�3EI � 8 kL3�

yA � 5PL3

2 �3EI � 8 kL3� #

Fig. 7. Cantilever beam carrying a uniformly distributed
moment.

Fig. 8. Free-body diagram of the cantilever beam in Fig. 7.

Fig. 9. Cantilever beam propped by a linear spring and carrying
a concentrated force.
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Example 6
A continuous beam AB with constant flexural

rigidity EI and total length 2L has a roller support
at A, a roller support at C, a fixed support at B and
carries a linearly distributed load as shown in Fig.
10. Determine (a) the vertical reaction force Ay

and the slope �A at A, (b) the vertical reaction force
Cy and the slope �C at C.

Solution
We note that this beam is statically indetermi-

nate to the second degree, which may naturally be
solved by the method of model formulas. We can
simply treat the vertical reaction force Cy at C as
an unknown applied concentrated force, directed
upward, and notice that the beam AB has a total
length of 2L, which is to be used as the value for
the parameter L in the model formulas in Equa-
tions (19) through (22). The boundary conditions
of this beam reveal that the moment MA and
deflection yA at A are zero, the slope �B and
deflection yB at B are zero, and the deflection yC

at C is zero. The shear force at the left end A is the
vertical reaction force Ay at A, which may be
assumed to be acting upward. Applying the
model formulas in Equations (21) and (22) to the
entire beam and using the model formula in
Equation (20) to impose that yC � 0 at C, in that
order, we write

0 � �A � Ay �2L�2
2 EI

� 0ÿÿCy

2 EI
�2Lÿ L�2 � 0

ÿ w0

6 EI
�2L�3 ÿ w1 ÿ w0

24 EIL
�2L�4

� w1

6 EI
�2Lÿ L�3 � w1 ÿ w0

24 EIL
�2Lÿ L�4 � 0ÿ 0

0 � 0� �A�2L� � Ay�2L�3
6 EI

� 0

ÿÿCy

6 EI
�2Lÿ L�3 � 0ÿ w0

24 EI
�2L�4

ÿ w1 ÿ w0

120 EIL
�2L�5

� w1

24 EI
�2Lÿ L�4 � w1 ÿ w0

120 EIL
�2Lÿ L�5 � 0ÿ 0

0 � 0� �AL� Ay

6 EI
L3 � 0ÿ 0� 0

ÿ w0

24 EI
L4 ÿ w1 ÿ w0

120 EIL
L5 � 0� 0� 0ÿ 0

The preceding three simultaneous equations yield

Ay � �21w0 � 9w1�L
70

�A � ÿ�14w0 � 11w1�L3

840 EI

Cy � �7w0 � 12 w1�L
28

We report that

Ay � �21w0 � 9w1�L
70

"

�A � �14w0 � 11w1�L3

840 EI

Cy � �7w0 � 12 w1�L
28

"

The slope �C is simply y 0 evaluated at C, which is
located at x = L. Applying the model formula in
Equation (19) and utilizing the preceding solutions
for �A and Ay, we write

�C � �A � Ay

2 EI
L2 � 0ÿ 0� 0ÿ w0

6 EI
L3

ÿ w1 ÿ w0

24 EI L
L4 � 0� 0� 0ÿ 0

� �7w0 � 8w1�L3

840 EI

We report that

�C � �7w0 � 8w1�L3

840 EI

Example 7
A stepped beam ABC carries a uniformly

distributed load w0 as shown in Fig. 11, where
the segments AB and BC have flexural rigidities
EI1 and EI2, respectively. Determine (a) the slopes
�A, �B, and �C at A, B, and C, respectively, (b) the
deflection yB at B.

Fig. 10. Continuous beam carrying linearly distributed load.

Fig. 11. Stepped beam carrying a uniformly distributed load.

Fig. 12. Free-body diagram for segment AB.
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Solution
Because of the discontinuity in flexural rigidity at B,
this beam needs to be divided into two segments
AB and BC for analysis in the solution. The
boundary conditions of this beam reveal that the
deflection yA at A and the deflection yC at C are
zero.

Applying the model formulas in Equations (21)
and (22), successively, to segment AB, as shown in
Fig. 12, we write

�B � �A � AyL2

2EI1
� 0ÿ 0� 0ÿ w0

6EI1
L3

ÿ 0� 0� 0� 0ÿ 0 �a�

yB � 0� �AL1 � AyL3

6EI1
� 0ÿ 0� 0

ÿ w0

24EI1
L4 ÿ 0� 0� 0� 0ÿ 0 �b�

For equilibrium of segment AB in Fig. 12, we write

� " �Fy � 0 : Ay ÿ By ÿ w0 L � 0 �c�

� �MB � 0 : ÿLAy � w0L2

2
�MB � 0 �d�

Applying the model formulas in Equations (21)
and (22), successively, to segment BC, as shown in
Fig. 13, we write

�C � �B � ByL2

2 EI2
�MBL

EI2

ÿ 0� 0ÿ 0ÿ 0� 0� 0� 0ÿ 0 �e�

0 � yB � �BL� ByL3

6EI2
�MBL2

2EI2

ÿ 0� 0ÿ 0ÿ 0� 0� 0� 0ÿ 0 �f �
For equilibrium of segment BC in Fig. 13, we write

� " �Fy � 0 : By ÿ Cy � 0 �g�
� �MC � 0 : ÿMB ÿ LBy � 0 �h�

The preceding eight simultaneous equations yield

Ay � 3 w0L

4
By � ÿw0L

4

Cy � ÿw0L

4
MB � w0L2

4

�A � ÿw0 L3�2I1 � 7I2�
48 EI1I2

�B � ÿw0 L3�2I1 ÿ 3I2�
48 EI1I2

�C � w0 L3�4 I1 � 3 I2�
48 EI1I2

yB � ÿw0 L4�2I1 � 3I2�
48 EI1I2

CONCLUSIONS

This paper is presented to share with educators
and practitioners in mechanics a proposed general
methodology that employs a set of four model
formulas in solving problems involving statically
indeterminate reactions at supports, as well as the
slopes and deflections, of beams. These formulas,
derived using singularity functions, provide the
material equations, besides the equations of static
equilibrium, for the solution of the problem. They
are expressed in terms of the following: (a) flexural
rigidity of the beam; (b) slopes and deflections, as
well as shear forces and bending moments, at both
ends of the beam; and (c) applied loads on the
beam. Selected typical applied loads are illustrated
in Fig. 1, which shows inclusion of a concentrated
force and a concentrated moment, somewhere on
the beam; a linearly distributed force over a
portion of the beam; and a uniformly distributed
moment over a portion of the beam.

The method of model formulas contains three
major salient features: (i) eliminating in many
problems the need to `segment' the beam and
drastically reduce the need to solve simultaneous
equations, such as those in Examples 1 through 6;
(ii) allowing the boundary conditions at certain
supports to be readily imposed using also the
model formulas, such as those in Examples 3 and
5; (iii) allowing one to treat unknown reactions at
supports not at the ends of a beam simply as
concentrated forces or moments, such as that in
Example 6. These are salient features not matched
by the original method of segments [9]. A beam
needs to be divided into two or more segments for
analysis only when it has discontinuity in slope or
in flexural rigidity, such as that in Example 7.
Nevertheless, one needs to remember that the
parameter L in the model formulas represents the
total length of the beam segment, to which the
formulas are to be applied.

Seven carefully selected examples have been
included to cover the gamut of possible questions
and to illustrate the power and generality of the
method. The rudiments of singularity functions are
usually explained in undergraduate textbooks [11,
12] for sophomore or junior students who usually
take a course in mechanics of materials and for
senior students who usually take a course in
mechanical or structural design in their under-
graduate curricula. It is recommended that the
method of model formulas be taught to students
as an alternative approach, after first teaching
them one or more of the traditionally established
methods [1±12]. Thus, the method of model formu-Fig. 13. Free-body diagram for segment BC.
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las may directly benefit and enrich the learning
experience and learning outcome of upper class
engineering students, as well as practising civil and
mechanical engineers. Furthermore, the method of

model formulas may readily serve as an indepen-
dent and effective means to quickly assess or check
the solutions obtained using other established
methods.

REFERENCES

1. H. M. Westergaard, Deflections of beams by the conjugate beam method, Journal of the Western
Society of Engineers, XXVI(11), 1921, pp. 369±396.

2. S. Timoshenko and G. H. MacCullough, Elements of Strength of Materials, 3rd edn, Van Nostrand
Company, New York, (1949).

3. S. H. Crandall, C. D. Norman, and T. J. Lardner, An Introduction to the Mechanics of Solids, 2nd
edn, McGraw-Hill, New York, (1972).

4. R. J. Roark and W. C. Young, Formulas for Stress and Strain, 5th edn, McGraw-Hill, New York,
(1975).

5. F. L. Singer and A. Pytel, Strength of Materials, 4th edn, Harper & Row, New York, (1987).
6. A. Pytel and J. Kiusalaas, Mechanics of Materials, Brooks/Cole, Pacific Grove, CA, (2003).
7. J. M. Gere, Mechanics of Materials, 4th edn, Brooks/Cole, Pacific Grove, CA, (2004).
8. I. C. Jong, Effective Teaching and learning of the conjugate beam method: synthesized guiding

rules, Proceedings of the 2004 ASEE Annual Conference & Exposition, Salt Lake City, (2004).
9. H. T. Grandin and J. J. Rencis, A new approach to solve beam deflection problems using the

method of segments, Proceedings of the 2006 ASEE Annual Conference & Exposition, Chicago,
(2006).

10. I. C. Jong, J. J. Rencis, and H. T. Grandin, Jr., A new approach to analyzing reactions and
deflections of beams: formulation and examples, Proceedings of IMECE06, ASME International
Mechanical Engineering Congress and Exposition, Chicago, (2006).

11. F. P. Beer, E. R. Johnston, Jr., and J. T. DeWolf, Mechanics of Materials, 4th edn, McGraw-Hill,
New York, (2006).

12. R. G. Budynas and J. K. Nisbett, Shigley's Mechanical Engineering Design, 8th edn, McGraw-Hill,
New York, (2008).

Ing-Chang Jong is Professor of Mechanical Engineering at the University of Arkansas. He
received his BSCE in 1961 from the National Taiwan University, his MSCE in 1963 from
South Dakota School of Mines and Technology, and his Ph.D. in Theoretical and Applied
Mechanics in 1965 from Northwestern University. He and Bruce G. Rogers authored the
textbook Engineering Mechanics: Statics and Dynamics, Oxford University Press, (1991).
Dr. Jong was Chair of the Mechanics Division, ASEE, in 1996±97. His research interests
are in mechanics and engineering education.

I. C. Jong74


