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An elastic beam on a simple support can be in neutral equilibrium under a variety of loading
conditions. Is it possible to ascertain the deflections of such a beam? The answer is: yes—by the
conjugate beam method propounded by Westergaard in 1921, and no—by all other methods. It is
recognized that support conditions, rather than boundary conditions, are what the conjugate beam
method requires in finding deflections of loaded beams; and more support conditions than boundary
conditions are usually known for beams in neutral equilibrium. The objective of this paper is to
share with engineering educators the pedagogy of the conjugate beam method and the solution for
the deflected configuration of a loaded elastic beam in neutral equilibrium by this method. The
feasibility of obtaining such a solution via this method is unmatched by other methods. The
conjugate beam method, missing in most current textbooks in mechanics of materials, is as good as
(or even better than) other methods when it comes to the analysis of deflections of beams. Once
well revived in textbooks, or otherwise, for teaching and learning, this method is expected to
significantly impact the favored way beam deflections are analyzed.
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NOMENCLATURE

EI Flexural rigidity of the given beam
L Parameter to indicate a length
M/EI Elastic weight (i.e., a fictitious load per

unit length) on the conjugate beam
P Parameter to indicate a concentrated

force
Ac
y;B

c
y Vertical reaction forces on the conju-

gate beam at points A, B
Mc

A;M
c
B Bending moments in the conjugate

beam at points A, B
Vc
A;V

c
D Vertical shear forces in the conjugate

beam at points A, D
�A; �D Slopes of the given beam at points A, D
�BL; �BR Slopes of beam just to the left (L) of

point B, just to the right (R) of point B
yA; yD Deflections of the given beam at points

A, D
tC=A Tangential deviation (vertical displace-

ment) of point C with respect to the
tangent drawn at point A of the
deflected given beam (in moment-area
theorems)

�Fc
y Summation of elastic weights, in the

vertical direction, on the conjugate
beam

�Mc
C Summation of moments, of elastic

weights, about point C on the conjugate
beam

�Mcc
C Summation of moments, of ‘‘elastic

weights,’’ about point C on the ‘‘conju-
gate beam’’ for a conjugate beam.

1. INTRODUCTION

A BEAM IS IN NEUTRAL EQUILIBRIUM if
the force system acting on the beam is statically
balanced and the potential energy of the beam in
the neighborhood of its equilibrium configuration
is constant.
The given beam in Fig. 1 has a flexural rigidity

EI and is in neutral equilibrium. Being elastic, this
beam will adopt a deflected shape. Question: What
method can be used to ascertain the configuration
of the deflected shape of this beam? Answer: The
conjugate beam method [1] can, all others cannot.
The other methods [2–10] for determining deflec-
tions of beams include:

. method of integration (with or without the use
of singularity functions);

. method of superposition;

. method using moment-area theorems;

. method using Castigliano’s theorem;

. method of model formulas.

* Accepted 21 July 2010. Fig. 1. Beam in neutral equilibrium on a simple support.
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The latter methods all expect a beam to have
sufficiently well-defined boundary conditions for
use in seeking a unique solution for the configura-
tion of the deflected beam. The beam in Fig. 1
manifests only one known boundary condition
(i.e., the deflection at the hinge support C is
zero), which is simply insufficient to allow any of
the other methods to settle on a unique solution.
However, the beam in Fig. 1 is not a puzzle to the

conjugate beammethod. This beammanifests three
support conditions (i.e., free end at A, simple
support atC, and free end atD), which are sufficient
to allow a corresponding conjugate beam to be
constructed and employed to ascertain the config-
uration of the deflected shape of this beam. This
beam problem will be solved in Section 2.

1.1 Pedagogy of the conjugate beam method
The conjugate beam method is actually a natural

extension of the moment-area theorems. It is an
elegant, efficient, and powerful method published
by Westergaard [1] some nine decades ago,
although some considered Mohr (1868) and
Breslau (1865) to have prior influences. Elemen-
tary presentation of this method did appear in
early textbooks in mechanics of materials [2, 3].
For reasons unknown, this method is missing in
most such current textbooks. The pedagogy of the
conjugate beam method lies in teaching and apply-
ing the rules in this method [1, 11]. These rules are
summarized as follows:

. Rule 1: The conjugate beam and the given beam
are of the same length.

. Rule 2: The load on the conjugate beam is the
elastic weight, which is the bending moment M
in the given beam divided by the flexural rigidity
EI of the given beam. (This elastic weight is
taken to act upward if the bending moment is
positive—to cause top fiber in compression—in
beam convention.)

For each existing support condition of the given
beam, there is a corresponding support condition
for the conjugate beam. The correspondence is
given by rules 3 through 7 as follows:

Existing support Corresponding support
condition in the condition in the
given beam: conjugate beam:

Rule 3: Fixed end Free end

Rule 4: Free end Fixed end

Rule 5: Simple support Simple support at the
at the end end

Rule 6: Simple support Unsupported hinge
not at the end

Rule 7: Unsupported Simple support
hinge

. Rule 8: The conjugate beam is in static equili-
brium.

. Rule 9: The slope of the given beam at any cross
section is given by the ‘‘shear force’’ at that cross
section of the conjugate beam. (This slope is
positive, or counterclockwise, if the ‘‘shear
force’’ is positive—tending to rotate the beam
element clockwise—in beam convention.)

. Rule 10: The deflection of the given beam at any
point is given by the ‘‘bending moment’’ at that
point of the conjugate beam. (This deflection is
upward if the ‘‘bending moment’’ is positive—
tending to cause the top fiber in compression—
in beam convention.)

1.2 Illustration of the pedagogy
A combined beam, with a constant flexural

rigidity EI, fixed supports at its ends A and D, a
hinge connection at B, and carrying a concentrated
force P at C, is shown in Fig. 2. Determine (a) the
vertical reaction forceAy and the reaction moment
MA at A, (b) the deflection yB of the hinge at B, (c)
the slopes �BL and �BR just to the left and just to
the right of the hinge at B, respectively, and (d) the
slope �C and the deflection yC at C.
Solution: We note that the beam given in Fig. 2

is statically indeterminate to the first degree. Using
Ay as the redundant unknown, we may assume
that the reaction force and reaction moment at A
are as shown in Fig. 3. Drawing the moment-
diagram by parts, we may construct the corres-
ponding conjugate beam as shown in Fig. 4.
Note in Figs. 2 and 4 the following key points:

. The conjugate beam and the given beam are of
the same length;

Fig. 2. Statically indeterminate beam with a hinge connection.

Fig. 3. Reactions at end A of the beam in Fig. 2.

Fig. 4. Conjugate beam for the beam in Figs. 2 and 3.
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. The fixed ends at A and D in the given beam
change to free ends at A and D in the conjugate
beam;

. The unsupported hinge at B in the given beam
changes to a simple support at B in the con-
jugate beam;

. The elastic weight acting on the conjugate beam
comes from the bending moment M in the given
beam divided by the flexural rigidity EI of the
given beam.

The conjugate beam in Fig. 4 and the free body of
the conjugate beam in Fig. 5 are in static equili-
brium. Referring to the entire free-body diagram in
Fig. 5, we write þ’ �Mc

B ¼ 0:

L � 3L
2

� 3AyL

EI
� L

2
� 3L � AyL

EI

� Lþ 2L

3

� �
� L
2
� PL
EI

¼ 0 ð1Þ

This equation yields

Ay ¼
5P

18
MA ¼ AyL ¼ 5PL

18
ð2Þ

We report that

Ay ¼
5P

18
" MA ¼ 5PL

18
’

Referring to Fig. 5, we write þ " �Fc
y ¼ 0:

Bc
y þ 3L

2
� 3AyL

EI
� 3L � AyL

EI
� L

2
� PL
EI

¼ 0

ð3Þ
This equation yields

Bc
y ¼

PL2

12EI
ð4Þ

Using the above obtained values, referring to Fig.
5, and applying the rules in the conjugate beam
method in Section 1.1, we may compute and report
the requested quantities as follows:

yB ¼ Mc
B ¼ L

3
� L
2
� AyL

EI
� L

2
� AyL

2

EI
¼ � 5PL3

54EI

yB ¼ 5PL3

54EI
#

�BL ¼ Vc
BL ¼ L

2
� AyL

EI
� AyL

2

EI
¼ � 5PL2

36EI

�BL ¼ 5PL2

36EI
@

�BR ¼ Vc
BR ¼ Vc

BL þ Bc
y ¼ � 2PL2

36EI

�BR ¼ 2PL2

36EI
@

�C ¼ Vc
C ¼ 2L

2
� 2AyL

EI
þ Bc

y � 2L � AyL

EI
¼ PL2

12EI

�C ¼ PL2

12EI
’

yC ¼ Mc
C ¼ 2L

3
� 2L
2

� 2AyL

EI
þ LBc

y

�L � 2AyL
2

EI
¼ � 11PL3

108EI

yC ¼ 11PL3

108EI
#

Based on the preceding solutions, deflections of the
beam in Fig. 2 are depicted in Fig. 6.

2. DEFLECTIONS OF A BEAM IN NEUTRAL
EQUILIBRIUM: CONJUGATE BEAM

METHOD

The slopes and deflections of the beam in neutral
equilibrium in Fig. 1 are puzzles to all methods,
except the conjugate beam method. The deflections
of this beam may now be investigated via its
conjugate beam as shown in Fig. 7, which is
constructed according to the rules as summarized
in Section 1.1.
For solving the conjugate beam in Fig. 7, we

Fig. 5. Free-body diagram of the conjugate beam in Fig. 4.

Fig. 6. Obtained configuration of deflections of the beam in
Fig. 2.

Fig. 7. Conjugate beam for the beam in Fig. 1.
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draw its free-body diagram as shown in Fig. 8. We
note that the free body in Fig. 8 is in static
equilibrium. Moreover, the ‘‘bending moment’’ at
the hinge C in Fig. 8 must be zero. These condi-
tions allow us to write þ " �Fc

y ¼ 0, for the entire
conjugate beam ABCD in Fig. 8:

Ac
y � Dc

y �
3L

2
� 2PL
EI

¼ 0 ð5Þ

þ ’ �Mc
C ¼ 0, for just segment ABC — the left

segment of the conjugate beam in Fig. 8:

� Mc
A � 2LAc

y þ L

3
� L
2
� 2PL
EI

¼ 0 ð6Þ

þ’ �Mc
C ¼ 0, for just segment CD — the right

segment of the conjugate beam in Fig. 8:

Mc
D � 2LDc

y � 2L

3
� 2L
2

� 2PL
EI

¼ 0 ð7Þ

Equations (5), (6), and (7) contain four unknowns:
Ac
y, M

c
A, D

c
y , and Mc

D. Thus, we are faced with a
problem involving a conjugate beam that is stati-
cally indeterminate to the first degree. The statical
indeterminacy of the conjugate beam in Figs. 7 and
8 can, of course, be resolved by using any of the
established methods.
Let us employ the conjugate beam method

further to obtain the needed additional equation
to go with the preceding Eqs. (5), (6), and (7) for
solving the problem. For simplicity, the ‘‘flexural
rigidity’’ of each segment of the conjugate beam in
Figs. 7 and 8 may be taken as equal to 1 unit. By
drawing the ‘‘elastic weight’’ by parts, we construct
the ‘‘conjugate beam’’ in Fig. 9 for the conjugate
beam in Figs. 7 and 8. Note that such a ‘‘conjugate
beam’’ as shown in Fig. 9 has free ends at A and D
and a simple support at its midpoint C.
The ‘‘conjugate beam’’ in Fig. 9 is in static

equilibrium. Similar to the original given beam in
Fig. 1, the ‘‘conjugate beam’’ in Fig. 9 turns out to
be also in neutral equilibrium. Using the super-
scripts cc to refer to the ‘‘conjugate beam’’ for the
conjugate beam and referring to Fig. 9, we can
write þ ’�Mcc

C ¼ 0:

� 2L

2
�Mc

Að2LÞ � 2L

3
� 2L
2

ð2Ac
yLÞ

þ L

5
� L

4
� PL

3

3EI

� �
� 2L

3
� 2L

2
� 2Dc

yL

� �

þ 2L

2
�Mc

Dð2LÞ � 2L

5
� 2L

4
� 4PL

3

3EI

� �
¼ 0 ð8Þ

Equation (8) is the additional equation needed to
go with the preceding Eqs. (5), (6), and (7) to
resolve the statical indeterminacy mentioned
above.
Justifying Eq. (8): The justification and validity

of Eq. (8) can briefly be examined. When the
conjugate beam under elastic weight in Figs. 7
and 8 ‘‘deflects,’’ it will adopt a shape as illustrated
in Fig. 10. According to the second moment-area
theorem [9], the tangential deviation tC=D indicated
in Fig. 10 is equal to the first moment,
þ’ðMcc

C ÞCD, taken counterclockwise about point
C, of the ‘‘elastic weight’’ between points C and D
in Fig. 9. Meanwhile, the tangential deviation tC=A

indicated in Fig. 10 is equal to the first moment,
þ@ðMcc

C ÞAC , taken clockwise about point C, of
the ‘‘elastic weight’’ between points A and C in Fig.
9. Thus, we have

tC=D ¼ þ’ðMcc
C ÞCD tC=A ¼ þ@ðMcc

C ÞAC ð9Þ

By inspection, we see in Fig. 10 that

tC=D ¼ tC=A tC=D � tC=A ¼ 0 ð10Þ

Thus, we write

tC=D � tC=A ¼ þ’ðMcc
C ÞCD

� �
� þ@ðMcc

C ÞAC
� �

¼ þ’ðMcc
C ÞCD

� �
þ þ’ðMcc

C ÞAC
� �

¼ þ’ðMcc
C ÞAD ¼ þ’�Mcc

C ¼ 0 ð11Þ

Equation (11) verifies that the indicated source
equation that yields Eq. (8) is indeed true and
valid in the eyes of moment-area theorems. Thus,
using the ‘‘conjugate beam’’ in Fig. 9 to further
study the statically indeterminate conjugate beam
in Figs. 7 and 8 is sound and well.
Solving the preceding Eqs. (5) through (8)

simultaneously for the four unknowns in them,
we get

Fig. 8. Free-body diagram for the conjugate beam in Fig. 7.

Fig. 9. ‘‘Conjugate beam’’ for the conjugate beam in Figs. 7
and 8. Fig. 10. ‘‘Deflection’’ of the conjugate beam in Figs. 7 and 8.
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Ac
y ¼ 75PL2

64EI
Dc

y ¼ � 117PL2

64EI
ð12Þ

Mc
A ¼ � 193PL3

96EI
Mc

D ¼ � 223PL3

96EI
ð13Þ

Using the above results and applying the rules in
the conjugate beam method in Section 1.1, we refer
to the conjugate beam in Fig. 8 and write

�A ¼ �B ¼ Vc
A ¼ Ac

y ¼ 75PL2

64EI

�C ¼ Vc
C ¼ Ac

y �
L

2
� 2PL
EI

¼ 11PL2

64EI
ð14Þ

�D ¼ Vc
D ¼ Dc

y ¼ � 117PL2

64EI

yA ¼ Mc
A ¼ � 193PL3

96EI
ð15Þ

yB ¼ Mc
B ¼ Mc

A þ LAc
y ¼ � 161PL3

192EI

yD ¼ Mc
D ¼ � 223PL3

96EI
ð16Þ

For the beam in neutral equilibrium in Fig. 1, we
report its slopes and deflections as follows:

�A ¼ �B ¼ 75PL2

64EI
’ �C ¼ 11PL2

64EI
’

�D ¼ 117PL2

64EI
@ yA ¼ 193PL3

96EI
#

yB ¼ 161PL3

192EI
# yD ¼ 223PL3

96EI
#

Based on these solutions, deflections of the beam
in Fig. 1 are depicted in Fig. 11.

3. ASSESSMENT OF OBTAINED
CONFIGURATION OF
DEFLECTED BEAM

Since the problem in this example cannot be
solved by any other methods, no direct comparison
for the obtained results can be made. Nonetheless,
assessment of the obtained configuration of deflec-
tions in Fig. 11 is possible. Let us refer to both Fig.

1 and Fig. 11. Since we have obtained the slope �C
for the tangent A00B00CD00 drawn at C in Fig. 11, we
may perform an analytical check of the obtained
solutions by regarding the bent shape of the curved
segment BCD of this beam as the elastic curve of
the deflected shape of the following two beams
cantilevered at C:

. Cantilever beam CB00: This beam has a length of
L, cantilevered at C, and is deflected from CB00

to CB0 by a concentrated force 2P # at B00.
. Cantilever beam CD00: This beam has a length of
2L, cantilevered at C, and is deflected from CD00

to CD0 by a concentrated force P # at D00.

From the geometry in Fig. 11 and the slopes and
deflections obtained in the preceding solution, we
find the following:

BB00 ¼ L�C ¼ 11PL3

64EI
D00D ¼ 2L�C ¼ 11PL3

32EI

ð17Þ

B00B0 ¼ yBj j � BB00 ¼ 161PL3

192EI
� 11PL3

64EI
¼ 2PL3

3EI

ð18Þ

D00D0 ¼ D00Dþ yDj j ¼ 11PL3

32EI
þ 223PL3

96EI
¼ 8PL3

3EI

ð19Þ

�B=C ¼ �B � �C ¼ 75PL2

64EI
� 11PL2

64EI
¼ PL2

EI
ð20Þ

�D=C ¼ �D � �C ¼ � 117PL2

64EI
� 11PL2

64EI
¼ � 2PL2

EI

ð21Þ

The preceding values for the several geometric
quantities in Fig. 11 may equivalently be written
as follows:

B00B0 ¼ ð2PÞL3

3EI
D00D0 ¼ P ð2LÞ3

3EI

�B=C ¼ ð2PÞL2

2EI
�D=C ¼ �P ð2LÞ2

2EI

We readily see that the above values for B00B0,
D00D0, �B=C , and �D=C are all in agreement with
those found in a table or an appendix in the
published literature [2–9] that lists the slope and
deflection of the free end of a cantilever beam with
flexural rigidity EI and length L, where a vertical
concentrated force P # acts at the free end. No
doubt, the preceding obtained results are consis-
tent with the established known results.

4. CONCLUSIONS

Conventional wisdom in the solution of a differ-
ential equation governing the deflection of a beam,

Fig. 11. Obtained configuration of deflections of the beam in
Fig. 1
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or the behavior of a certain physical system,
expects and requires that adequate boundary
conditions be available and be satisfied before a
unique solution can be obtained. Westergaard’s
conjugate beam method employs support condi-
tions and hence bypasses the protocol requiring
adequate boundary conditions for solving
problems of beam deflections. This approach
works well because boundary conditions have, in
fact, been taken into account in the conjugate
beam method when the support conditions are
specified in the beginning stages of the solutions.
More support conditions than boundary condi-

tions are usually known for beams in neutral
equilibrium. The conjugate beam method can
readily handle five basic support conditions:

. fixed end;

. free end;

. simple support at the end;

. simple support not at the end;

. unsupported hinge.

This method usually requires no explicit integration
in the solution, and it requires good skills in statics
in the operation. The conjugate beam method is
suitable for learning by sophomores and juniors;
and it has been taught, tested, and highlighted in the
course MEEG 3013 Mechanics of Materials at the
University of Arkansas for several years. In the
analysis of beam deflections, this method is the
one most frequently preferred by the students.
The conjugate beam method is unique and

outstanding. It is the only analytical method that
can be applied to investigate the deflection of a
beam in neutral equilibrium. This method is
concise and efficacious. Above all, it attests that
some early ideas in engineering could be still useful
today and attention should be paid to them.
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