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Enriching Students’ Study of Beam Reactions and Deflections: 

From Singularity Functions to Method of Model Formulas 
 

 

 

Abstract 

 

Since publication of the method of model formulas in a recent issue of the IJEE,
1
 there has been 

considerable interest in knowing a good approach to teaching this method to enrich students’ 

study and set of skills in determining statically indeterminate reactions and deflections of elastic 

beams. This paper is aimed at sharing with mechanics educators an approach that can be used to 

effectively introduce and teach such a method.  
 

It is a considered opinion that the method of model formulas be taught to students after having 

taught them one or more of the traditional methods. Besides enhancing the learning experience 

of upper class engineering students, this method can benefit practicing engineers. In particular, 

this method may readily serve as an independent and effective means to quickly check or assess 

the solutions obtained using other methods. 

 

 

I.  Introduction 

 

Beams are longitudinal members subjected to transverse loads. Students usually first learn the 

design of beams for strength. Then they learn the determination of deflection of beams under a 

variety of loads. Traditional methods that are used in determining statically indeterminate reac-

tions and deflections of elastic beams include:
2 -12

 method of integration (with or without the use 

of singularity functions), method of superposition, method using moment-area theorems, method 

using Castigliano’s theorem, method of conjugate beam, and method of segments.  

 

The method of model formulas
1
 is a newly propounded method. Beginning with a general preset 

model loading on a beam, a set of four model formulas are established for use in this method. 

These formulas are expressed in terms of the following:  
 

(a) flexural rigidity of the beam;  

(b) slopes, deflections, shear forces, and bending moments at both ends of the beam;  

(c) typical applied loads (concentrated force, concentrated moment, linearly distributed 

force, and uniformly distributed moment) somewhere on the beam.  

 

For starters, one must know that a working proficiency in the rudiments of singularity functions 

is a prerequisite to using the method of model formulas. To benefit a wider readership, who may 

have different specialties in mechanics, and to avoid or minimize any possible misunderstanding, 

this paper includes summaries of the rudiments of singularity functions and the sign conventions 

for beams. Readers, who are familiar with these topics, may skip the summaries. An excerpt 

from the method of model formulas is needed and shown in Fig. 1, courtesy of IJEE.
1
  



 

 

Excerpt from the Method of Model Formulas 

Courtesy: Int. J. Engng. Ed., Vol. 25, No. 1, pp. 65-74, 2009 
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Positive directions of forces, moments, slopes, and deflections 
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Fig. 1.  Loading, deflections, and formulas in the Method of Model Formulas for beams 



Ŷ Summary of rudiments of singularity functions: 
 

Notice that the argument of a singularity function is enclosed by angle brackets (i.e., < >). The 

argument of a regular function continues to be enclosed by parentheses [i.e., ( )]. The rudiments 

of singularity functions include the following:
8,9
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Equations (6) and (7) imply that, in using singularity functions for beams, we take 
 
 

                                                             0 1     for     0b b   (12) 
 

                                                             0 0     for     0b b   (13) 

 

Ŷ Summary of sign conventions for beams: 
 

In the method of model formulas, the adopted sign conventions for various model loadings on the 

beam and for deflections of the beam with a constant flexural rigidity EI are illustrated in Fig. 1. 

Notice the following key points:
 

 

Ɣ A shear force is positive if it acts upward on the left (or downward on the right) face of the 

beam element [e.g., aV  at the left end a, and bV  at the right end b in Fig. 1(a)]. 

Ɣ At ends of the beam, a moment is positive if it tends to cause compression in the top fiber of 

the beam [e.g., aM  at the left end a, and bM  at the right end b in Fig. 1(a)].  

Ɣ If not at ends of the beam, a moment is positive if it tends to cause compression in the top fi-

ber of the beam just to the right of the position where it acts [e.g., the concentrated moment 

KK   and the uniformly distributed moment with intensity 0m  in Fig. 1(a)].  

Ɣ A concentrated force or a distributed force applied to the beam is positive if it is directed 

downward [e.g., the concentrated force P P , the linearly distributed force with intensity 

0w  on the left side and intensity 1w  on the right side in Fig. 1(a), where the distribution be-

comes uniform if 0 1w w ]. 
 

The slopes and deflections of a beam displaced from AB to ab are shown in Fig. 1(b). Note that 
 

Ɣ A positive slope is a counterclockwise angular displacement [e.g., a  and b  in Fig. 1(b)]. 

Ɣ A positive deflection is an upward linear displacement [e.g., ay  and by  in Fig. 1(b)]. 



II.  Enriching Students’ Study with Method of Model Formulas via Contrast in Solutions 

 

Equations (1) through (4) are related to the beam and loading shown in Fig. 1; they are the model 

formulas in the new method. Their derivation (not a main concern in this paper) can be found in 

the paper that propounded the method of model formulas.
1
 Note that L in the model formulas in 

Eqs. (1) through (4) is a parameter representing the total length of the beam. In other words, L is 

to be replaced by the total length of the beam segment, to which the model formulas are applied. 

Statically indeterminate reactions as well as slopes and deflections of beams can, of course, be 

solved. A beam needs to be divided into multiple segments for analysis only if (a) it is a com-

bined beam (e.g., a Gerber beam) having discontinuities in slope at hinge connections between 

segments, and (b) it contains segments with different flexural rigidities (e.g., a stepped beam). 

Having learned an additional efficacious method, students’ study and set of skills are enriched. 

 

Mechanics is mostly a deductive science, but learning is mostly an inductive process. For the 

purposes of teaching and learning, all examples will be first solved by the traditional method of 

integration (MoI) ʊ with the use of singularity functions ʊ then solved again by the method of 

model formulas (MoMF). As usual, the loading function, shear force, bending moment, slope, 

and deflection of the beam are denoted by the symbols q, V, M, y , and y, respectively. 

 

Example 1.  A cantilever beam AB with constant flexural rigidity EI and length L is acted on by 

a concentrated force of magnitude P at C, and two concentrated moments of magnitudes PL and 

2PL at A and D, respectively, as shown in Fig. 2. Determine the slope A  and deflection Ay  at 

end A. 

 
 

Fig. 2.  Cantilever beam carrying a force and two moments 
 

 

Solution by MoI.  Using the symbols defined earlier and applying the method of integration 

(with the use of singularity functions) to this beam, we write 
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The boundary conditions are ( ) 0y L   and ( ) 0y L   at the fixed end B. Imposing these two 

conditions, respectively, we write 
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These two simultaneous equations yield 
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Substituting the values of 1C  and 2C  into the foregoing equations for EIy  and EIy , we write 
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We report that 
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Solution by MoMF.  In applying the method of model formulas to this beam, we make sure to 

adhere to the sign conventions as illustrated in Fig. 1. At end A, the moment AM  is –PL and the 

shear force AV  is zero. At end B, the slope B  and deflection By  are both zero. Note in the model 

formulas that we have /3Px L  for the concentrated force at C; 2K PL   and 2 /3Kx L  for 

the concentrated moment at D. Applying the model formulas in Eqs. (3) and (4), successively, to 

this beam AB, we write 
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These two simultaneous equations yield 
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Remark.  We observe that both the method of integration (with the use of singularity functions) 

and the method of model formulas yield the same solutions, as expected. In fact, the solution by 

the MoMF looks more direct than that by the MoI. Furthermore, if singularity functions were 

not used in the MoI, the solution would require division of the beam into multiple segments 

(such as AC, CD, and DB), and much more algebraic work in the solution would be involved. In 

Examples 2 through 4, readers may observe similar features. 



Example 2.  A beam AB with constant flexural rigidity EI and length L, a roller support at A, a 

fixed support at B, and carrying a distributed load of intensity w is shown in Fig. 3. Determine 

(a) the vertical reaction force yA  at A, (b) the slope A  at A, (c) the deflection Cy  at C. 
 

 
 

Fig. 3.  Propped cantilever beam carrying a uniformly distributed load 
 

Solution by MoI.  We note that this beam AB is statically indeterminate to the first degree, and 

we may assume that yA  acts upward at A as shown in Fig. 4. 
 

 

 
 

Fig. 4.  Vertical reaction force yA  at A of the propped cantilever beam 
 

 

Applying the method of integration to this beam, we write 
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The boundary conditions are ( ) 0y L   and ( ) 0y L   at the fixed end B, as well as (0) 0y   at 

the roller support A. Imposing these three conditions, respectively, we write 
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These three simultaneous equations yield 
 



3

1

11

768

wL
C                  2 0C                 

41

128
y

wL
A   

 

Substituting the values of C1, C2, and Ay into the foregoing equations for EIy and EIy , we write 
 

3

1

0

11

768
A x

C wL
y

EI EI



     

4
3 4

1/2

1 19
( / 2) ( / 2) 0 ( / 2) 0

6 24 6144

y

C x L

A w wL
y y L L C L

EI EI

 
        

 
 

 

We report that 
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Solution by MoMF.  Let the method of model formulas be now applied to solve for the statically 

indeterminate reaction yA  and the deflections of the beam. Upon inspecting the boundary condi-

tions of this beam, we see that the deflection Ay  at A, the moment AM  at A, the deflection By  at 

B, and the slope B  at B are all equal to zero. The shear force at A is yA . Noting that 0wx  , 

/2wu L , and 0 1w w w  , we apply the model formulas in Eqs. (3) and (4), successively, to 

the entire beam to write 
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Using the above values of yA  and A  and letting /2x L  in the model formula in Eq. (2), we 

write 
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Example 3.  A cantilever beam AB with constant flexural rigidity EI and total length of 2L is 

propped at its midpoint C and carries a concentrated moment M0 as well as a distributed load of 

intensity w as shown in Fig. 5. Determine (a) the vertical reaction force yC  at C, (b) the slope A  

at A, (c) the deflection Ay at A, (d) the slope C  at C. 
 

 
 

Fig. 5.  Cantilever beam propped at its midpoint and carrying loads 
 
 

Solution by MoI.  We note that this beam AB is statically indeterminate to the first degree, and 

we may assume that yC  acts upward at C as shown in Fig. 6. 
 

 

                                                
 

Fig. 6.  Vertical reaction force yC  at C of the propped cantilever beam 
 

Applying the method of integration to this beam, we write 
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The boundary conditions are (2 ) 0y L   and (2 ) 0y L   at the fixed end B, as well as ( ) 0y L   

at the roller support C. Imposing these three conditions, respectively, we write 
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These three simultaneous equations yield 
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Substituting the values of C1, C2, and Cy into the foregoing equations for EIy and EIy , we write 
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Solution by MoMF.  Let the method of model formulas be now applied to solve the problem. 

The reaction force yC  at C in Fig. 6 may be treated as an unknown applied concentrated force. 

We note that this beam has a total length of 2L, which will be the value for the parameter L in 

the model formulas in Eqs. (1) through (4). Upon inspecting the boundary conditions of this 

beam, we see that the deflection By  and the slope B  at the fixed end B, as well as the deflection 

Cy  at C, are equal to zero. Applying Eqs. (3) and (4) to the beam AB and using Eq. (2) to impose 

the condition that 0Cy   at C, in that order, we write 
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These three simultaneous equations yield 
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Using the above value for A  and letting x L  in Eq. (1), we write 
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We report that 
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Example 4.  A continuous beam AB with constant flexural rigidity EI and total length 2L has a 

roller support at A, a roller support at C, a fixed support at B and carries a linearly distributed 

load as shown in Fig. 7. Determine (a) the vertical reaction force yA  and the slope A  at A, (b) 

the vertical reaction force yC  and the slope C  at C. 
 

 
 

Fig. 7.  Continuous beam carrying linearly distributed load 

 

Solution by MoI.  We note that the beam AB is statically indeterminate to the second degree, and 

we may assume that yA  and yC  act upward at A and C, respectively, as shown in Fig. 8. 
 

 

 
 

Fig. 8.  Reaction forces yA  at A and yC  at C of the continuous beam 
 

 

In applying the method of integration to this beam, we first use the concept of superposition to 

write the loading function q as follows: 
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Then, we write 
 

0 0 1 2 2 1

4 4 2
yy

w w w
V A x C x L w x x x L x L

L L
                      

1 1 2 3 3 2

2 12 12 4
yy

w w w w
EIy M A x C x L x x x L x L

L L
                       

2 2 3 4 4 3
1

2 2 6 48 48 12

y yA C w w w w
EIy x x L x x x L x L C

L L
                       

3 3 4 5 5 4
1 2

6 6 24 240 240 48

y yA C w w w w
EIy x x L x x x L x L C x C

L L
                        

 
 

The boundary conditions are (2 ) 0y L   and (2 ) 0y L   at the fixed end B, ( ) 0y L   at the 

roller support C, and (0) 0y   at the roller support A. Imposing these four conditions, in order, 

we write 
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The above four simultaneous equations yield 
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Substituting the values of C1 and Ay into the foregoing equation for ,EIy  we write 
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We report that 
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Solution by MoMF.  Let the method of model formulas be now applied to solve the problem. 

The reaction force yC  at C in Fig. 8 may be treated as an unknown applied concentrated force. 

We notice that the beam AB has a total length of 2L, which will be the value for the parameter L 

in the model formulas in Eqs. (1) through (4). Upon inspecting the boundary conditions of this 

beam, we see that the moment AM  and deflection Ay  at A are zero, the slope B  and deflection 

By at B are zero, and the deflection Cy  at C is zero. The shear force at the left end A is the vertic-

al reaction force yA  at A. Applying Eqs. (3) and (4) to the beam AB and using Eq. (2) to impose 

the condition that 0Cy   at C, in that order, we write 
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These three simultaneous equations yield 
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The slope C  is simply y  evaluated at C, which is located at x = L. Applying Eq. (1) and using 

the above values for A  and yA , we write 
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III.  Assessment and an Effective Approach to Teaching the MoMF 

 

The method of model formulas is a general methodology that employs a set of four equations to 

serve as model formulas in solving problems involving statically indeterminate reactions, as well 

as the slopes and deflections, of elastic beams. The first two model formulas are for the slope and 

deflection at any position x of the beam and contain rudimentary singularity functions, while the 

other two model formulas contain only traditional algebraic expressions. Generally, this method 

requires much less effort in solving beam deflection problems. Most students favor this method 

because they can solve problems in shorter time using this method and they score higher in tests. 

 

The examples in Section II provide a variety of head-to-head comparisons between solutions by 

the traditional method of integration and those by the method of model formulas; and all of the 

solutions are, respectively, in agreement. Thus, all solutions by the method of model formulas are 

naturally correct. The writer has been successful in effectively introducing and teaching the me-

thod of model formulas to students to enrich their study and set of skills in determining statically 

indeterminate reactions and deflections of elastic beams by using the following steps: 
 

Ŷ Teach the traditional method of integration and the imposition of boundary conditions. 

Ŷ Teach the rudiments of singularity functions and utilize them in the method of integration. 

Ŷ Go over briefly the derivation
1
 of the four model formulas in terms of singularity functions. 

Ŷ Give students the heads-up on the following advantages in the method of model formulas: 

 ż No need of integration or evaluation of constants of integration. 

 ż Not prone to generate a large number of simultaneous equations even if 

 the beam carries multiple concentrated loads (forces or moments), 

 the beam has one or more simple supports not at its ends, 

 the beam has linearly distributed loads not starting at its left end, and 

 the beam has linearly distributed loads not ending at its right end. 

Ŷ Demonstrate solutions of several beam problems by the method of model formulas. 

Ŷ Assess the solutions obtained (e.g., comparing with solutions by another method). 
 

Although solutions obtained by the method of model formulas are often more direct than those 

obtained by the method of integration, a one-page excerpt from the method of model formulas, 



such as that shown in Fig. 1, must be made available to those who used this method. Still, one 

may recall that a table of formulas for slope and deflection of selected beams having a variety 

of supports and loading is also needed by persons who use the method of superposition. In this 

regard, the method of model formulas is on a par with the method of superposition. 

 

 

IV.  Concluding Remarks 

 

In the method of model formulas, no explicit integration or differentiation is involved in applying 

any of the model formulas. The model formulas essentially serve to provide material equations 

(which involve and reflect the material property) besides the equations of static equilibrium of 

the beam that can readily be written. Selected applied loads are illustrated in Fig. 1(a), which 

cover most of the loads encountered in undergraduate Mechanics of Materials. In the case of a 

nonlinearly distributed load on the beam, the model formulas may be modified by the user for a 

specific nonlinearly distributed load. 

 

The method of model formulas is best taught to students as an alternative method, after they have 

learned one or more of the traditional methods.
2-12

 This method enriches students’ study and set 

of skills in their determining reactions and deflections of beams, and it provides engineers with a 

means to quickly check their solutions obtained using traditional methods. 
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