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Abstract 
 
The method of model formulas is a new method for solving statically indeterminate reactions and 
deflections of elastic beams. Since its publication in a recent issue of the IJEE,1 many instructors 
of Mechanics of Materials have considerable interest in knowing an effective way for teaching 
this method to enrich students’ study and their set of skills in determining beam reactions and 
deflections. Moreover, people are interested in seeing demonstrations showing any advantage of 
this method over the traditional methods. This paper is aimed at (a) providing comparisons of 
this new method versus the traditional method of integration via several head-to-head contrasting 
solutions of same problems, and (b) proposing a set of steps for use to effectively introduce and 
teach this new method to students. It is a considered opinion that the method of model formulas 
be taught to students after having taught them one or more of the traditional methods. 
 
 

I.  Introduction 
 
Beams are longitudinal members subjected to transverse loads. Students usually first learn the 
design of beams for strength. Then they learn the determination of deflections of beams under a 
variety of loads. Traditional methods used in determining statically indeterminate reactions and 
deflections of elastic beams include:2 -1 2  method of integration (with or without use of singularity 
functions), method of superposition, method using moment-area theorems, method of conjugate 
beam, method using Castigliano’s theorem, and method of segments. 
 
The method of model formulas1 is a newly propounded method. Beginning with an elastic beam 
under a preset general loading, a set of four model formulas are derived and established for use 
in this new method. These formulas are expressed in terms of the following:  
 

(a) flexural rigidity of the beam;  
(b) slopes, deflections, shear forces, and bending moments at both ends of the beam;  
(c) typical applied loads (concentrated force, concentrated moment, linearly distributed 

force, and uniformly distributed moment) somewhere on the beam.  
 
For starters, one must know that a working proficiency in the rudiments of singularity functions 
is a prerequisite to using the method of model formulas. To benefit a wider readership, which 
may have different specialties in mechanics, and to avoid or minimize any possible misunders-
tanding, this paper includes summaries of the rudiments of singularity functions and the sign 
conventions for beams. Readers, who are familiar with these topics, may skip the summaries. An 
excerpt from the method of model formulas is needed and shown in Fig. 1, courtesy of IJEE.1  
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Excerpt from the Method of Model Formulas 
Courtesy: Int. J. Engng. Ed., Vol. 25, No. 1, pp. 65-74, 2009 
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Fig. 1.  Loading, deflections, and formulas in the Method of Model Formulas for beams 
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■ Summary of rudiments of singularity functions: 
 

Notice that the argument of a singularity function is enclosed by angle brackets (i.e., < >). The 
argument of a regular function continues to be enclosed by parentheses [i.e., ( )]. The rudiments 
of singularity functions include the following:8,9 
 
 

                                        ( )    if    0   and   0n nx a x a x a n         (5) 
 

 

                                              1   if    0   and   0nx a x a n        (6) 
 

 

                                               0   if    0   or   0nx a x a n        (7) 
 

                                       11   if    0
1

x n nx a dx x a n
n




       

  (8) 
 

                                           1   if    0
x n nx a dx x a n


         (9) 

                                          1     if      0n nd x a n x a n
dx

         (10) 

                                            1     if      0n nd x a x a n
dx

         (11) 
 

 

Equations (6) and (7) imply that, in using singularity functions for beams, we take 
 
 

                                                             0 1     for     0b b   (12) 
 

                                                             0 0     for     0b b   (13) 
 
■ Summary of sign conventions for beams: 
 

In the method of model formulas, the adopted sign conventions for various model loadings on the 
beam and for deflections of the beam with a constant flexural rigidity EI are illustrated in Fig. 1. 
Notice the following key points: 
 

● A shear force is positive if it acts upward on the left (or downward on the right) face of the 
beam element [e.g., aV  at the left end a, and bV  at the right end b in Fig. 1(a)]. 

● At ends of the beam, a moment is positive if it tends to cause compression in the top fiber of 
the beam [e.g., aM  at the left end a, and bM  at the right end b in Fig. 1(a)].  

● If not at ends of the beam, a moment is positive if it tends to cause compression in the top 
fiber of the beam just to the right of the position where it acts [e.g., the concentrated moment 

KK   and the uniformly distributed moment with intensity 0m  in Fig. 1(a)].  
● A concentrated force or a distributed force applied to the beam is positive if it is directed 

downward [e.g., the concentrated force P P , the linearly distributed force with intensity 

0w  on the left side and intensity 1w  on the right side in Fig. 1(a), where the distribution be-
comes uniform if 0 1w w ]. 

 

The slopes and deflections of a beam displaced from AB to ab are shown in Fig. 1(b). Note that 
 

● A positive slope is a counterclockwise angular displacement [e.g., a  and b  in Fig. 1(b)]. 
● A positive deflection is an upward linear displacement [e.g., ay  and by  in Fig. 1(b)]. 
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II.  Teaching and Learning a New Method via Contrast between Solutions 
 
Equations (1) through (4) are related to the beam and loading shown in Fig. 1; they are the model 
formulas in the new method. Their derivation (not a main concern in this paper) can be found in 
the paper that propounded the method of model formulas.1 Note that L in the model formulas in 
Eqs. (1) through (4) is a parameter representing the total length of the beam. In other words, L is 
to be replaced by the total length of the beam segment, to which the model formulas are applied. 
Statically indeterminate reactions as well as slopes and deflections of beams can, of course, be 
solved. A beam needs to be divided into segments for analysis only if (a) it is a combined beam 
(e.g., a Gerber beam) having discontinuities in slope at hinge connections between segments, 
and (b) it contains segments with different flexural rigidities (e.g., a stepped beam). Having 
learned an additional efficacious method, students’ study and set of skills are enriched. 
 
Mechanics is mostly a deductive science, but learning is mostly an inductive process. For the 
purposes of teaching and learning, all examples will be first solved by the traditional method of 
integration (MoI) ― with use of singularity functions ― then solved again by the method of 
model formulas (MoMF). As usual, the loading function, shear force, bending moment, slope, 
and deflection of the beam are denoted by the symbols q, V, M, y , and y, respectively. 
 
Example 1. A simply supported beam AD with constant flexural rigidity EI and length L is acted 
on by a concentrated force P   at B and a concentrated moment PL   at C as shown in Fig. 2. 
Determine (a) the slopes A  and D  at A and D, respectively; (b) the deflection By  at B. 
 

 
 

Fig. 2.  Simply supported beam AD carrying concentrated loads 
 
 

Solution. The beam is in static equilibrium. Its free-body diagram is shown in Fig. 3. 
 
 

 
 

Fig. 3.  Free-body diagram of the simply supported beam AD 
 
 

● Using MoI: Using the symbols defined earlier and applying the method of integration (with 
use of singularity functions) to this beam, we write 
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The boundary conditions of this beam reveal that (0) 0y   at A and ( ) 0y L   at D. Imposing 
these two conditions, respectively, we write 
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These two simultaneous equations yield 
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● Using MoMF: In applying the method of model formulas to this beam, we must adhere to the 
sign conventions as illustrated in Fig. 1. At the left end A, the moment AM  is 0, the shear force 

AV  is 5P/3, the deflection Ay  is 0, but the slope A  is unknown. At the right end D, the deflection 

Dy  is 0, but the slope D  is unknown. Note in the model formulas that we have /3Px L  for 
the concentrated force P   at B and 2 /3Kx L  for the concentrated moment PL   at C. Apply-
ing the model formulas in Eqs. (3) and (4), successively, to this beam AD, we write 
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These two simultaneous equations yield 
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Using the value of A  and applying the model formula in Eq. (2), we write 
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We report that 
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Remark. We observe that both the method of integration (with use of singularity functions) and 
the method of model formulas yield the same solutions, as expected. In fact, the solution by the 
MoMF looks more direct than that by the MoI. Furthermore, if singularity functions were not 
used in the MoI, the solution would require division of the beam into multiple segments (such as 
AB, BC, and CD), and much more effort in algebraic work in the solution would be involved. In 
Examples 2 through 5, readers may observe similar features. 
 
Example 2. A cantilever beam AC with constant flexural rigidity EI and length L is loaded with a 
distributed load of intensity w in segment AB as shown in Fig. 4. Determine (a) the slope A  and 
deflection Ay  at A, (b) the slope B  and deflection By  at B. 
 

 
 

Fig. 4.  Cantilever beam AC loaded with a distributed load 
 
 

Solution. The beam is in static equilibrium. Its free-body diagram is shown in Fig. 5. 
 
 

 
 

Fig. 5.  Free-body diagram of the cantilever beam AC 
 
 

● Using MoI: Applying the method of integration to this beam, we write 
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The boundary conditions of this beam reveal that ( ) 0y L   and ( ) 0y L   at C. Imposing these 
two conditions, respectively, we write 
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These two simultaneous equations yield 
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Using these values and the foregoing equations for EIy and EIy , we write 
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● Using MoMF: Let the method of model formulas be now applied to this beam. The shear force 

AV  and bending moment AM  at the free end A, as well as the slope C  and deflection Cy  at the 
fixed end C, are all zero. Noting that 0wx   and /2wu L , we apply the model formulas in Eqs. 
(3) and (4) to the entire beam to write 
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These two simultaneous equations yield 
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Using these values and applying the model formulas in Eqs. (1) and (2), respectively, we write 
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Example 3. A cantilever beam AC with constant flexural rigidity EI and total length 2L is 
propped at A and carries a concentrated moment 0M   at B as shown in Fig. 6. Determine (a) 
the vertical reaction force yA  and slope A  at A, (b) the slope B  and deflection By at B. 
 

 
 

Fig. 6.  Cantilever beam AC propped at A and carrying a moment at B 
 
 

Solution. The beam is in static equilibrium. Its free-body diagram is shown in Fig. 7, where we 
note that the beam is statically indeterminate to the first degree. 
 
 

 
 

Fig. 7.  Free-body diagram of the propped cantilever beam AC 
 
 

● Using MoI: Applying the method of integration to this beam, we write 
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The boundary conditions of this beam reveal that (0) 0y   at A, (2 ) 0y L   at C, and (2 ) 0y L   
at C. Imposing these three conditions, respectively, we write 
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These three simultaneous equations yield 
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We report that 
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● Using MoMF: Let the method of model formulas be now applied to this beam. We note that 
this beam has a total length of 2L, which will be the value for the parameter L in all the model 
formulas in Eqs. (1) through (4). We see that the deflection Cy  and the slope C  at C, as well as 
the deflection Ay  at A, are equal to zero. Applying the model formulas in Eqs. (3) and (4) to the 
entire beam, we write 
 

2
0(2 )

0 0 0 (2 ) 0 0 0 0 0 0
2

y
A

L M L L
EI EI

A              
 

3
20(2 )

0 0 (2 ) 0 0 (2 ) 0 0 0 0 0 0
6 2
y

A

L ML L L
EI EI

A               
 

These two simultaneous equations yield 
 

09
16y
MA

L
           0

8A

M L
EI

    
 

Using these values and applying the model formulas in Eqs. (1) and (2), respectively, we write 
 

2 050 0 0 0 0 0 0 0 0
2 32

y
AB x L

A M Ly L
EI EI

 


              

2
3 00 0 0 0 0 0 0 0 0 0

6 32
y

AB x L

A M Ly y L L
EI EI




                
 

We report that 
 

09
16

y
M

L
 A           0

8A

M L
EI

             05
32B
M L

EI
             

2
0

32B

M Ly
EI

   

 
 

Example 4. A continuous beam AC with constant flexural rigidity EI and total length 2L has a 
roller support at A, a roller support at B, a fixed support at C and carries a linearly distributed 
load as shown in Fig. 8. Determine (a) the vertical reaction force yA  and slope A  at A, (b) the 
vertical reaction force yB  and slope B  at B. 
 
 

 
 

Fig. 8.  Continuous beam AC carrying a linearly distributed load 
 
Solution. The beam is in static equilibrium. Its free-body diagram is shown in Fig. 9, where we 
note that the beam is statically indeterminate to the second degree. 
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Fig. 9.  Free-body diagram of the continuous beam AC 
 
 

● Using MoI: Treating yB  as an applied unknown concentrated force, we may use superposition 
technique to first write the loading function q as follows: 
 

1 1 0 1 1 0

2 2 2
yy

w w wq A x B x L x x x L w x L
L L

                       

Applying the method of integration to this beam, we write 
 

0 0 1 2 2 1

1 1 2 3 3 2

2 2 3 4 4 3
1

3 3 4

2 4 4

4 12 12 2

2 2 12 48 48 6

6 6 48

yy

yy

yy

yy

w w wV A x B x L x x x L w x L
L L

w w w wM EIy A x B x L x x x L x L
L L

A B w w w wEIy x x L x x x L x L C
L L

A B wEIy x x L x

                    

                     

                      

          5 5 4
1 2240 240 24

w w wx x L x L C x C
L L

            
 

The boundary conditions of this beam reveal that (2 ) 0y L   and (2 ) 0y L   at C, ( ) 0y L   at B, 
and (0) 0y   at A. Imposing these four conditions, in order, we write 
 

3 4
1

2 2 4 30 (2 ) (2 ) (2 )
2 2 12 48 48 6

yy w w w wL L L L L
B

L L
A

L C        

3
2

4 5 5 4
1

30 (2 ) (2 ) (2 ) (2 )
6 6 48 240 240 24

yy w w w wL L L L L L L
L

B
L

A
C C         

3 4 5
1 20

6 48 240
y w wL

A
C CL L L

L
      

 

20 C  
 

The above four simultaneous equations yield 
 

39
140y

wLA            31
56y
wLB            

3

1
3
140
wLC             2 0C   

 

Using these values and the foregoing equation for ,EIy  we write 
 

3
1

0

3
140A x

C wLy
EI EI




              
3

2 3 4
1

1 23
2 12 48 1680

y
B x L

A w w wLy L L L C
EI L EI




 
      

 
 

We report that 
 

39
140y

wL A             
33

140A
wL

EI
               31

56
y

wL B             
323  

1680B
wL

EI
    
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● Using MoMF: Let the method of model formulas be now applied to this beam. We notice that 
the beam AC has a total length 2L, which will be the value for the parameter L in all the model 
formulas in Eqs. (1) through (4). We see that the shear force AV at left end A is equal to yA , the 
moment AM  and deflection Ay  at A are zero, the deflection By  at B is zero, and the slope C  and 
deflection Cy  at C are zero. Applying the model formulas in Eqs. (3) and (4) to the beam AC and 
using Eq. (2) to impose the condition that ( ) 0By y L   at B, in that order, we write 
 

2
2 3 4

3 4

(2 ) ( )/2 /20 0 (2 ) 0 (2 ) (2 )
2 2 6 24

( )/2       (2 ) (2 ) 0 0
6 24

y y
A

L w w wL L L L
EI EI EI EIL

w w wL L L L
EI EIL

BA         

     
 

 

3
3 4 5

4 5

( )(2 ) /2/20 0 (2 ) 0 (2 ) 0 (2 ) (2 )
6 6 24 120

( )/2(2 ) (2 ) 0 0      24 120

y y
A

L ww wL L L L L
EI EI EI EIL

w wwL L L L
EI E

B

IL

A          

     
 

3 4 5( )/2 /20 0 0 0 0 0 0 0 0
6 24 120

y
A

w w wL L L L
EI E
A

I EIL
              

 

These three simultaneous equations yield 
 

3339 31                    
140 140 56y yA

wLwL wLA B
EI

     
 

Using these values and applying the model formula in Eq. (1), we write 
 

3
2 3 4( )/2/2 230 0 0 0 0 0 0

1682 6 24 0
y

B x L A

A wLww wy L L L
EI EI EI L EI

 
              

We report that 
 

39
140y

wL A             
33

140A
wL

EI
               31

56
y

wL B             
323  

1680B
wL

EI
    

 
 

Example 5. A stepped beam AD, propped at A and fixed at D, carries a concentrated force P   at 
B as shown in Fig. 10, where the segments AC and CD have flexural rigidities 1EI and 2EI , re-
spectively. Determine (a) the reaction force yA  at A; (b) the slopes A , B , and C  at A, B, and 
C; (c) the deflections By  and Cy  at B and C. 
 
 

 
 

Fig. 10.  Stepped beam AD being supported at A and D and loaded at B 
 
Solution. The beam is in static equilibrium and is statically indeterminate to the first degree. To 
facilitate the analysis of this beam, we first draw the free-body diagrams of its segments AC and 
CD as shown in Fig. 11. 
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                                   (a)                                                              (b) 
 

Fig. 11  Free-body diagrams of the segments AC and CD 
 
 

● Using MoI: Applying the method of integration to the segment AC as shown in Fig. 11(a), we 
write 

1 1

0 0

1 1
1

2 2
1 1

3 3
1 1 2

2 2

6 6

yAC

yAC

yAC AC

y
AC

y
AC

q A x P x L

V A x P x L

M EI y A x P x L

A PEI y x x L C

A PEI y x x L C x C

       

      

       

        

        

 

Applying the method of integration to the segment CD as shown in Fig. 11(b), we write 
 
 

1 2

0 1

1 0
2

2 1
2 3

3 2
2 3 4

2 2

2 2

2 2

2 2
2

2 2
6 2

CD C C

CD C C

CD CD C C

C
CD C

C C
CD

q V x L M x L

V V x L M x L

M EI y V x L M x L

VEI y x L M x L C

V MEI y x L x L C x C

 



       

       

        

         

         

 

The boundary conditions of the beam reveal that (0) 0ACy   at A; (2 ) (2 )AC CDy L y L  and 
(2 ) (2 )AC CDy L y L   at C; (3 ) 0CDy L   and (3 ) 0CDy L   at D. Imposing these five conditions, in 

order, we write 
 

                                                                         20 C  (a) 
 

                                   1
3 3

1
2 3 4

2

1 1(2 ) ( ) (2 ) (2 )
6 6

y PL L L L
A

C C C
I I

C
 

     
 

 (b) 

                                                   2 2

1

3
1

2

1
(2 ) ( )

2 2
y C

L L
I

A
CP

I

 
   

 
 (c) 

 

                                                3
3 4

20 ( ) ( ) (3 )
6 2
C CL LV M C CL     (d) 

 

                                                        2
30 ( ) ( )

2
C

C

V M CL L    (e) 
 

 

For equilibrium of the segment AC in Fig. 11(a), we write 
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                                                   0 :        0y y CAF PV      (f) 
 

                                           0 :        2 0C y CAM L LP M        (g) 
 

The above seven simultaneous Eqs. (a) through (g) yield 
 
 

1 2

1 2

( )23 5
( )2 19 8

y
I I PA

I I



            1 2

1 2

( )15 11
( )2 19 8C

I I PV
I I
 


            1 2

1 2

( )4 3
19 8C

I I PLM
I I



 

 

2 2 2
1 1 2 2

1
2 1 2

( )31 4
( )4 19 8

I I I I PLC
I I I

  


            2 0C   

 

2
1 2

3
1 2

( )23
( )4 19 8
I I PLC

I I
 


            

3
2

4
1 2

( )89
( )6 19 8

I PLC
I I

 


 

 
 

Using these values and the foregoing equations for 1 ACEI y and 1 ACEI y  we write 
 

2 2 2
1 1 1 2 2

0
1 2 1 21

( )31 4
( )4 19 8A AC x

I I I I PLCy
EI EI I I I

 
    


 

 

2 2 2 2
1 1 1 2 2

1 2 1 211

( )8
( )2 4 19 8

y

B AC x L

A L I I I I PLCy
EI EI EI I I I

 
     


 

 

2 22
1 1 2

2
1 1 2 1 21

(2 ) ( )23
( )2 2 4 19 8

y

C AC x L

A L I I PLPL Cy
EI EI EI EI I I

 
     


 

 

3 2 2 3
1 1 1 2 2

1 1 1 2 1 2

( )3 70 7
( )6 12 19 8

y

B AC x L

A L I I I I PLLCy y
EI EI E I I I I

    


 

 

3 33
1 1 2

2
1 1 1 2 1 2

( )4 3 202
3 ( )6 6 19 8

y
C AC x L

A L I I PLPL LCy y
EI EI EI EI I I

     


 

We report that 
 
 

1 2

1 2

( )23 5
( )2 19 8

y
I I P

I I
 


A             
2 2 2

1 1 2 2

1 2 1 2

( )31 4
( )4 19 8A

I I I I PL
EI I I I

  


  

 

2 2 2
1 1 2 2

1 2 1 2

( )8
( )4 19 8B

I I I I PL
EI I I I

  


             
2

1 2

2 1 2

( )23
( )4 19 8C

I I PL
EI I I

  


  

 

2 2 3
1 1 2 2

1 2 1 2

( )3 70 7
( )12 19 8B

I I I I PLy
EI I I I

 


            
3

1 2

2 1 2

( )3 20
( )6 19 8C

I I PLy
EI I I

 


 

 
 

● Using MoMF: Let the method of model formulas be now applied to this stepped beam. We 
first divide the beam into two segments, whose free-body diagrams are shown in parts (a) and (b) 
of Fig. 11. In particular, note that the segment AC has a total length 2L, which will be the value 
for the parameter L in all the model formulas in Eqs. (1) through (4). We see that shear force 
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AV at the left end A is equal to yA , the moment AM  and deflection Ay  at A are zero. We may let 
the slope and deflection at C be C  and Cy , respectively. Applying the model formulas in Eqs. 
(3) and (4) to segment AC in Fig. 11(a), in that order, we write 
 

                 
2

2

1 1

(2 )
0 (2 ) 0 0 0 0 0 0 0

2 2
y

C A

L P L L
EI EI

A              (h) 

          
3

3

1 1

( )20 (2 ) 0 (2 ) 0 0 0 0 0 0 0
6 6
y

AC
L PL L L

EI EI
Ay               (i) 

 

For equilibrium of the segment AC in Fig. 11(a), we write 
 

 

                                                   0 :        0y y CAF PV      (j) 
 

                                           0 :        2 0C y CAM L LP M        (k) 
 

We note that the slope D  and deflection Dy  at end D of segment CD are zero. Applying the 
model formulas in Eqs. (3) and (4) to segment CD in Fig. 11(b), in that order, we write 
 

 

                            
2

2 2
0 0 0 0 0 0 0 0 0

2
CC

C
L L

EI EI
V M            (l) 

                       
3 2

2 2

0 0 0 0 0 0 0 0 0
6 2

C C
CC

LLL
EI

MV
E

y
I

             (m) 

 

The above six simultaneous Eqs. (h) through (m) yield 
 
 
 

1 2

1 2

( )23 5
( )2 19 8

y
I I PA

I I



            1 2

1 2

( )15 11
( )2 19 8C
I I PV

I I
 


            1 2

1 2

( )4 3
19 8C
I I PLM

I I



 

 

2 2 2
1 1 2 2

1 2 1 2

( )31 4
( )4 19 8A

I I I I PL
EI I I I

   


            
2

1 2

2 1 2

( )23
( )4 19 8C

I I PL
EI I I

  


            
3

1 2

2 1 2

( )3 20
( )6 19 8C

I I PLy
EI I I

 


 

 
 

Using these values and applying the model formulas in Eqs. (1) and (2), we write 
 

2 2 2
2 1 1 2 2

1 1 2 1 2

( )80 0 0 0 0 0 0 0 0
( )2 4 19 8

y
B AC x L A

A I I I I PLy L
EI EI I I I

 
              


 

2 2 3
3 1 1 2 2

1 1 2 1 2

( )3 70 70 0 0 0 0 0 0 0 0 0
( )6 12 19 8

y
AB AC x L

A I I I I PLy y L L
EI E I I I I




              


 

 

We report that 
 
 

1 2

1 2

( )23 5
( )2 19 8

y
I I P

I I
 


A             
2 2 2

1 1 2 2

1 2 1 2

( )31 4
( )4 19 8A

I I I I PL
EI I I I

  


  

 

2 2 2
1 1 2 2

1 2 1 2

( )8
( )4 19 8B

I I I I PL
EI I I I

  


             
2

1 2

2 1 2

( )23
( )4 19 8C

I I PL
EI I I

  


  

 

2 2 3
1 1 2 2

1 2 1 2

( )3 70 7
( )12 19 8B

I I I I PLy
EI I I I

 


            
3

1 2

2 1 2

( )3 20
( )6 19 8C

I I PLy
EI I I

 

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● Checking Obtained Results: The effort to obtain the solution for the problem in this example 
is algebraically challenging. Naturally, it is desirable to check the preceding obtained results 
against a known solution for the special case of  
 

1 2I I I   
 

For such a special case, the preceding obtained results degenerate into the following: 
 

14
27y

P A             
2

3A
PL
EI

               
22

27B
PL
EI

    

211
54C

PL
EI

               
320

81B
PLy
EI

              
323

162C
PLy
EI

   
 

We find that these special results are indeed consistent with those given at the end of textbooks.9 
 
 
III.  An Effective Approach to Teaching the MoMF 
 
The method of model formulas is a general methodology that employs a set of four equations to 
serve as model formulas in solving problems involving statically indeterminate reactions, as well 
as slopes and deflections, of elastic beams. The first two model formulas are for the slope and 
deflection at any position x of the beam and contain rudimentary singularity functions, while the 
other two model formulas contain only traditional algebraic expressions. Generally, this method 
requires much less effort in solving beam deflection problems. Most students favor this method 
because they can solve problems in shorter time using this method and they score higher in tests. 
 
The five examples, arranged in order of increasing challenge, in Section II provide a variety of 
head-to-head comparisons between solutions by the traditional method of integration and those 
by the method of model formulas; and all of the solutions are, respectively, in agreement. Thus, 
all solutions by the method of model formulas are naturally correct. Experience shows that the 
following steps form a pedagogy that can be used to effectively introduce and teach the method 
of model formulas to students to enrich their study and set of skills in determining statically inde-
terminate reactions and deflections of elastic beams in mechanics of materials: 
 

■ Teach the traditional method of integration and the imposition of boundary conditions. 
■ Teach the rudiments of singularity functions and utilize them in the method of integration. 
■ Go over briefly the derivation1 of the four model formulas in terms of singularity functions. 
■ Give students the heads-up on the following advantages in the method of model formulas: 
 ○ No need to integrate or evaluate constants of integration. 
 ○ Not prone to generate a large number of simultaneous equations even if 

 the beam carries multiple concentrated loads (forces or moments), 
 the beam has one or more simple supports not at its ends, 
 the beam has linearly distributed loads not starting at its left end, and 
 the beam has linearly distributed loads not ending at its right end. 

■ Demonstrate solutions of several beam problems by the method of model formulas. 
■ Assess the solutions obtained (e.g., comparing with solutions by another method). 
 



16 

Proceedings of the 2010 Midwest Section Conference of the American Society for Engineering Education 

Although solutions obtained by the method of model formulas are often more direct than those 
obtained by the method of integration, a one-page excerpt from the method of model formulas, 
such as that shown in Fig. 1, must be made available to those who used this method. Still, one 
may remember that a list of formulas for slope and deflection of selected beams having a variety 
of supports and loading is also needed by persons who use the method of superposition. In this 
regard, the method of model formulas is on a par with the method of superposition. 
 
 

IV.  Concluding Remarks 
 
In the method of model formulas, no explicit integration or differentiation is involved in applying 
any of the model formulas. The model formulas essentially serve to provide material equations 
(which involve and reflect the material property) besides the equations of static equilibrium of 
the beam that can readily be written. Selected applied loads are illustrated in Fig. 1(a), which 
cover most of the loads encountered in undergraduate Mechanics of Materials. In the case of a 
nonlinearly distributed load on the beam, the model formulas may be modified by the user for 
such a load. 
 
The method of model formulas is best taught to students as an alternative method, after they have 
learned one or more of the traditional methods.2-12 This new method enriches students’ study and 
set of skills in determining reactions and deflections of beams, and it provides engineers with a 
means to independently check their solutions obtained using traditional methods. 
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