
ING-CHANG JONG
Department of Mechanical Engineering
University of Arkansas

ARNOLDO MUYSHONDT
Department of Power Electronics and Custom Controllers
Sandia National Laboratories

ABSTRACT

Web publication is increasingly utilized in education. This paper is
written to contribute a basic yet versatile software, with illustra-
tion, for creating interactive web-based modules for tests with im-
mediate feedback. Each module assists students in learning new
material by offering “tips,” without providing answers right away,
when wrong answers are chosen. The software is segmented into
five program files, where the first two are subject specific while the
other three are general. Being independent of web sites, the three
general program files need no changes by users and are included,
with ample comments, in the appendices. Beginning instructors
can readily create web-based modules by directly modifying the
two subject specific program files.

I. INTRODUCTION

The World Wide Web (WWW) is a very powerful tool for
communication. Generally, the WWW is an environment where
the information created is accessible on demand, anytime, and
anywhere. It has been used by organizations and individuals for
various purposes. In education, it is capable of allowing on-de-
mand access to any information and material for a given course or
for tutoring, which an instructor provides at a web site. In particu-
lar, the WWW can be used to great advantage in teaching high
enrollment courses as well as distance education. Increasing efforts
to create web-based educational material on the WWW clearly
point to the trend of using web publication as an alternative mode
in modern education.1–6

It is the purpose of this paper to present a basic yet versatile soft-
ware that uses Practical Extraction and Report Language (PERL)
and Common Gateway Interface (CGI) scripting7–8 to manipulate
data files to readily create modules for interactive on-line testing
with immediate feedback. It allows as well as promotes learning be-
cause appropriate “tips” are offered, without providing answers
right away, when wrong answers are chosen by students. Note that
PERL is a programming language like C or FORTRAN.

A CGI script is simply a program that is run on a web server based
on input from a browser. It enables users to interact with the web

pages. For example, when a web user fills in a form or a search dialog
on the web, the user has used a CGI script. Generally, CGI scripts
are basic sets of variables and mechanisms for passing information
from the browser to the server. A CGI script can be used as the action
to a form or as a direct link. The script may take input from the
browser, manipulate it, and display the results on a new browser page.
Depending on what the web server supports, CGI scripts can be
batch files, compiled programs, or any other executable entity. The
scripts may be written in any language as long as the web server sup-
ports that language. For example, a CGI script can be written in C as
long as the server supporting the web page supports the C language.
In our case, the CGI scripts are written in PERL.

The software contributed in this paper is written for any educa-
tional professional with a moderate knowledge of how a web site
works. The software consists of the following five files:

(a) One gateway file: test.html,
(b) One data file: test#.dat,
(c) Three general program files: testrad.cgi, ans1.cgi, and

ans2.cgi.
With this setup, an instructor can directly modify the gateway file
and the data file for a given subject and simply employ the general
program files with no change. We acknowledge Steven E. Brenner8

for using his library routine, cgi-lib.pl, which he has granted condi-
tional permission to users, and which is downloadable from the site:
http://cgi-lib.stanford.edu/cgi-lib/. Note that the cgi-lib.pl has long
been used as a library for creating CGI scripts in the PERL lan-
guage.

The aforementioned five contributed files and the library rou-
tine cgi-lib.pl may be saved in an appropriate directory in the in-
structor’s computer account, where the server supports PERL and
CGI scripting. For illustrative purposes, we have saved them in the
directory “webtest” at the web site: http://engr.uark.edu/~icj/
webtest/. Naturally, other relevant files may also be saved in this di-
rectory. To be sure, an instructor should consult the system admin-
istrator of the local server about the protocol for the proper setup for
CGI scripts written in PERL. Note that many C commands will
work with PERL. A good on-line reference manual for PERL pro-
gramming can be found at the web site: http://www-cgi.cs.cmu.
edu/cgi-bin/perl-man.

II. INTERACTIVE WEB-BASED TESTS

Pictures are often invaluable in presenting new ideas to readers.
The setup of a gateway page for students and a typical adventure in
an interactive web-based test are illustrated in the screen shots in
figures 1 through 8. Generally, a student uses a browser (e.g.,
Netscape Navigator 4.5 or Internet Explorer 5) on a computer to
sign on to a gateway page for taking web-based tests, which have

October 1999 Journal of Engineering Education 509

Simple Scripts to Produce Interactive Web-
Based Tests with Immediate Feedback:
Software and Illustration

been set up by an instructor. In the presented illustration, the gate-
way page is located at http://engr.uark.edu/~icj/webtest/test.html.

The student may first take a simple practice test to gain familiar-
ity with a web-based test. The tests available to the students for
testing and learning are listed on the gateway page as illustrated in
figure 1. Suppose that the student proceeds to click on the word
here under Test 2 on this gateway page, the test created by the in-
structor will appear as illustrated in figure 2. The student reads the
instruction at the top of the test page, clicks black dots onto appro-
priate radio buttons to mark chosen answers as shown in figure 3,
then clicks the SUBMIT button to have the test graded as shown in
figure 4.* The student should study the comments, besides the test
score, on this feedback page. In particular, note that a “tip” is of-
fered when a wrong choice was made by the student, without giving
out the correct choice right away, to promote learning.

If incorrect choices were noted on the feedback page (e.g., fig-
ure 4), the student is to study the corresponding “tips” carefully and,
then, click the word here below the score on this page to take the
test over. When the student follows this option, the same test will
appear on the screen as illustrated in figure 5.** Note in this figure

that the order of prospective answers in each question has been ran-
domized by the program whenever a student takes the test over.
The rearranged order of the prospective answers in each question
would require the student more thinking and understanding than
just memorization in choosing the correct answers. Since the ques-
tions in each retake involve the same concepts to be mastered, there
is little uncertainty and no information overload. Thus, much more
learning and confidence building for the students would take place.

Eventually, the student will master the concepts and be able to
choose correct answers as illustrated in figure 6* and confirmed in
figure 7.** The time of submittal of the test for grading, shown on
feedback pages, may serve as a record of progress that can be print-
ed on paper as hard copies. The correct choices and explanations for
the test can be viewed by clicking the word here on the last line of
any feedback page. The key to Test 2 is shown in figure 8.

III. GATEWAY FILE: test.html

The file test.html is a program to create the gateway page shown
in figure 1, which the students first see when they sign on to the

510 Journal of Engineering Education October 1999

*In figure 4, we note the following features:
● The time of submittal of the test for grading is recorded on the feedback that

can be printed.
● A tip is offered when a wrong choice was made by the student, without giving

out the correct choice right away, to promote learning.
● A positive comment for immediate reinforcement is given whenever a correct

choice was made.
Furthermore, notice in the last two lines in figure 4 that the student is offered two
options: (a) click to take the test over, (b) click to see the correct choices and explana-
tions (i.e., the key to the test).

**By comparing the question statements and the order of prospective answers in
figure 5 with those in figure 2, we note the following features:

● The question statements remain the same.
● The order of prospective answers in each question has been randomized by the

program whenever a student takes the test over.
● A student may take the test over multiple times.

These features enhance the learning of students.

*In figure 6, we note the following features:
● The rearranged order of the prospective answers in each question would re-

quire the student more thinking and understanding than just memorization in
choosing the correct answer.

● The student takes essentially the same test over.
Since the questions in each retake involve the same concepts to be mastered, there is
little uncertainty and no information overload.

**In figure 7, we note the following features:
● The time of subsequent submittal of the test for grading, shown on the feed-

back, now serves as a record of progress that can be printed.
● Positive comments continue to be given whenever correct choices were made.
● No tips or hints are needed because the student has answered all questions cor-

rectly this time.
Although the last two lines in figure 7 still list two options, only the second option—
click to see the explanations—may be of interest to this student.

Figure 1. The gateway page for taking web-based tests.

web site for Interactive Web-Based Tests. It is written in HTML
(HyperText Markup Language).9 It lists the tests that have been
developed and are available to the students. When a test is selected
from this gateway page, the browser causes the general program file
testrad.cgi to be run on the server to process the data file test#.dat

(e.g., test1.dat or test2.dat) and to display the test on the computer
screen. Since the relevant files are saved in the directory “webtest” at
the site: http://engr.uark.edu/~icj/webtest/, the source program of
this HTML file, written to display just two tests as shown in fig-
ure 1, is accordingly illustrated in figure 9.

October 1999 Journal of Engineering Education 511

Figure 2. The test that appears when the word here under Test 2 on the gateway page in figure 1 is clicked.

This HTML file does reflect that both of the files
testrad.cgi and test#.dat are presently saved in the sub-directory
webtest under the user directory ~icj in the server engr.uark.edu
on the Internet. These directories and files must have attributes
that allow public access on the WWW. Here, an instructor

needs to correspondingly modify only the names of these direc-
tories and the server in this HTML file. Note that the second
instance of “~icj ” in each underlined text is not preceded by a
space. Naturally, this file may be written to display more avail-
able tests.

512 Journal of Engineering Education October 1999

Figure 3. Black dots clicked onto radio buttons to mark chosen answers on the test by a student who has some
difficulty.

IV. DATA FILE: test#.dat

This file provides data for creating an interactive web-based
test. For illustration, we make a test, called Test 2, which refers
to Some Introductory Concepts in Statics. It is a multiple-choice

test consisting of five different types of questions. Each question
has four or five prospective answers. A question may have a fig-
ure in the statement of the question, or in the answer, or both.
Credit points are not the same for all questions. Additionally,
we shall use superscripts for powers and boldface letters for vec-
tors. Appropriate tips, comments, and explanations, are to be

October 1999 Journal of Engineering Education 513

Figure 4. The immediate feedback to the student, who SUBMITTED the chosen answers shown in figure 3 for
grading.

keyed to correspond to the various prospective answers. Such an
interactive test, illustrated in figures 2 through 8, is created
using the data file test2.dat, which is presented in figure 10,
where the tags (highlighted in boldface) are explained in tables 1
and 2.

The data file test2.dat illustrates five different types of questions.
This file may serve as a template, with tables 1 and 2 as guides, in
creating a test. In this file, notice the following:

● A # sign, followed by a space, at the start of a line signifies a
comment line, and such a line is ignored during processing.

514 Journal of Engineering Education October 1999

Figure 5. The test that appears when the student clicks to choose taking the test over, where the answers are
rearranged.

It may conveniently be used to number the questions in the
test.

● If there are several sets of data files to create several tests, they
may be named sequentially, such as, test1.dat, test2.dat, . . . ,
etc. The HTML tags used in these files will work on the web.

● The title listed under the tag title: is needed by viewers in
identifying the test on the web page.

● The listing of the location of the directory under the tag loc:
is what makes the general program files independent of the
web sites of the users.

October 1999 Journal of Engineering Education 515

Figure 6. Black dots clicked onto radio buttons to mark chosen answers on the test bythe student who takes it over.

● Each question may contain up to eight tagged items, but the
three tags question:, answer:, and & are the minimum re-
quired.

● Each tagged item must start with a tag and must be typed
in one line that may involve wrapping; i.e., no <return> or
<enter> key should be pressed in typing a tagged item.

● Semicolons are used as separators for items listed under the
tags apicture:, answer:, and tip:. Thus, no one of these listed
items can have a semicolon as a punctuation mark within itself.

● A 1 sign should precede the first character of the correct an-
swer in the list under the tag answer:; it must be the first char-
acter to follow the semicolon if the correct answer is not placed

516 Journal of Engineering Education October 1999

Figure 7. 100 %—the feedback to the student, who SUBMITTED the chosen answers shown in figure 6 for grading.

at beginning of the list. If the correct answer starts with a 1
sign as part of the answer, then there are two consecutive 1
signs.

● Question #5 contains the maximum number of tagged
items. The tag apicture: is used in this question, and the list-
ed pictures will be displayed as prospective answers. Thus,

the items listed under the tag answer: are treated as dummy
ones. The dummy ones may be listed as pic1; pic2; pic3; 1
pic4, where the 1 sign in front of “pic4” is used to signify
that the correct picture (or graphic item) listed under the tag
apicture: is correspondingly the 4th listed item. In other
words, http://engr.uark.edu/~icj/webtest/t2figs/fig2.5d.gif
is the location for the correct answer picture for question #5.

October 1999 Journal of Engineering Education 517

Figure 8. Key to test.

V. PROGRAM FILES

A. Program File: testrad.cgi
The program file testrad.cgi consists of CGI scripts written in

PERL. This program, as well as other CGI programs, starts with
#!/usr/local/bin/perl as its first line, where the # sign is followed by
the exclamation point !. This first line of the program points to the
location of the PERL interpreter in the server so that the remaining
code in the program can be properly executed. Make sure a copy of
PERL resides in the subdirectory /usr/ local /bin / of the server. If a
line starts with the # sign followed by one or more spaces, it is a
comment line and will be ignored in the execution of the program.

This program file is first called by the gateway file test.html
when a student clicks the word here to select a test to take on the
gateway page for taking a web-based test, as shown in figure 1. The
program then reads the data for the test from the file test#.dat (e.g.,
test2.dat). It displays the test on the screen and uses radio-buttons
to list the prospective answers on the test. The SUBMIT and
RESET buttons are provided at the bottom of the test page. Upon
completing the choices of answers, the student is to click the SUB-
MIT button, which causes the program ans1.cgi to be executed.
The file testrad.cgi is listed, with ample comments, in Appendix A.

B. Program File: ans1.cgi
The program file ans1.cgi is another program consisting of

CGI scripts written in PERL. This program is first called into ac-
tion by the program testrad.cgi to grade the submitted test, give
tips or comments, and allow students opportunities to take the
test over. This program calls the program ans2.cgi, which will
handle the presentation of correct choices and explanations for
the test. The file ans1.cgi is listed, with ample comments, in Ap-
pendix B.

C. Program File: ans2.cgi
The program file ans2.cgi is the last contributed program,

which consists of CGI scripts written in PERL. This program is
called into action by the program ans1.cgi. The main task of the
program ans2.cgi is to handle the display of the correct answers
and explanations for the logic behind the correct answers. In
other words, this program displays the key to the test when a re-

quest to see the correct choices and explanations is made by click-
ing the word here on the last line of the feedback page (e.g., figure
4 or 7). The file ans2.cgi is listed, with ample comments, in Ap-
pendix C.

VI. BENEFITS AND ISSUES

An educational software tool, which is practical, versatile, pow-
erful, general, user-friendly, well-documented, and freely available,
is highly desirable. We thought the software tool that we presented
and illustrated in this paper has attributes that match or are close to
those just described. That is why we would like to share it with
other educational professionals.

A. Benefits
The software presented in this paper can readily be modified to

require passwords from users for using the web-base tests. It can be
expanded to incorporate audio and video clips. At present, the soft-
ware presented is, however, intended as a versatile tool to do the
following:

● Teach new or remedial concepts and material in any subject
via interactive web-based tests to any number of students, on
demand, any time, and anywhere. This is possible once the
modules for testing and learning (e.g., test2.dat) have been
developed by an educational professional and the access to
the World Wide Web on the Internet is available. Although
the name of the game is “web-based test,” there is actually a
lot of learning experience to be gained by the students be-
cause it offers “tips” to them, without providing answers
right away, when they made incorrect choices. Students
could take the test again and still get something out of the
experience. This feature is not readily matched by the con-
ventional tests!

● To accommodate different biological clocks and different
learning styles of the students. Some students are of the early-
bird type, whose most effective hours of learning is in the
early part of the day. Some students are of the night-owl
type, who have difficulty in getting up early but have produc-
tive hours in the night. There are students who find it fun

518 Journal of Engineering Education October 1999

Figure 9. test.html.

October 1999 Journal of Engineering Education 519

Figure 10. test2.dat.

and challenging to interact with a computer and to learn
from it at their own pace and in a time of their choice. Since
computers are not persons, students are less likely to feel em-
barrassed to be initially given a low test score. The questions
in each retake of a web-based test involve the same concepts
to be mastered; thus, there is little uncertainty and much
more learning for the students.

● To allow instructors to create teaching material of lasting
value and to save overall efforts of teaching any size classes
over the long run. A well-developed module for interactive
web-based test can be improved or enriched over time, and it
is there once it is done. Efficient teaching with less effort will
be realized over time, and the instructor can use the time
saved for other productive scholarly activities.

520 Journal of Engineering Education October 1999

Table 1.Tags for Listing Title and Location . (See the file Test 2.dat.)

Table 2. Tags for Creating a Question . (See the file test2.dat.)

B. Issues
The issues with web-based tests may likely arise when one tries

to use them for replacement of conventional tests. The use of
passwords alone could not solve the problem associated with cheat-
ing by students. The identity of the student taking a web-based test
will require a more challenging and well thought-out solution. Per-
haps, a testing center with proctors, as in distance education, may
offer a viable solution for problems associated with cheating.

Any server that supports CGI scripts and PERL can be used to
run the software presented in this paper. As the developed modules
for web-based tests are kept in an account of a web server, the sys-
tem administrator will undoubtedly be involved in ensuring security
of all the files.

VII. CONCLUDING REMARKS

This paper presents a basic yet versatile software that will enable
interested beginning instructors to readily create modules for inter-
active web-based tests on virtually any subject. The software is writ-
ten using PERL and CGI scripts to manipulate inputs, and it is
user-friendly. The software is segmented into five related program
files. For quick development of interactive on-line testing and
learning on the WWW, one can directly modify the two template
files test.html and test2.dat, and simply utilize the three general
program files testrad.cgi, ans1.cgi, and ans2.cgi, which need no
changes. Sample web pages providing an overview of the interactive
on-line testing and learning have been included. The benefits and
issues associated with interactive web-based tests have been dis-
cussed.

Web publishing on the Internet is fast becoming a powerful tool
to provide an alternative mode in education. The use of well-devel-
oped web publishing packages will certainly play an important role
in education in the coming new century. For a try out of interactive
web-based tests, visit the gateway page at the location http://engr.
uark.edu/~icj/webtest/test.html.

To download the software used in creating Test 1 and Test 2,
simply click the name of the zipped file webtest.zip on the web page
at http://engr.uark.edu/~icj/webtest/. After unzipping webtest.zip
to a WWW accessible directory in a computer account at a local
server, one should correspondingly change the web addresses (loca-
tions) contained in the files test.html and test#.dat. Note that each
server could have its particular protocol for setting up the software.
Therefore, additional assistance can come from the system admin-
istrator of the local server. It is our hope and pleasure to share our
easy-to-use software with other educational professionals who are
being encouraged to utilize web publication to enhance education.
Many colleagues will surely report further innovations of web-
based education in the future.

REFERENCES

1. Shawki, T.G., “TAM 221 Mechanics of Materials,” Department of
Theoretical and Applied Mechanics, University of Illinois at Urbana-
Champaign, IL, 1995, http://e2.tam.uiuc.edu/TAM221/index/.

2. Kayser, J., and M. Massetti, “Statics Tutorial,” Department of Civil
Engineering, Lafayette College, Easton, PA, 1995, http://www.lafayette.
edu/kayserj/statics/cover.htm.

3. Martin, T., “The Development of Interactive World Wide Web
Courseware for Students of Engineering and Technology at Deakin
University,” Faculty of Science and Technology, Deakin University, Victo-
ria, Australia, 1995, http://www.scu.edu.au/sponsored/ausweb/
ausweb95/papers/education1/martin/.

4. Kwok, P., E. Flory , and J. J. Rencis, “Bar and Beam Element Learn-
ing Modules for Finite Element Method,” Mechanical Engineering De-
partment, Worcester Polytechnic Institute, Worcester, MA, 1996,
http://femur.wpi.edu/Learning-Modules/Stress-Analysis/.

5. Cabell, B., J. J. Rencis, and J. Alam, “Using Java to Develop Interac-
tive Learning Material for the World Wide Web,” Proceedings, 1996 ASEE
Annual Conference, ASEE, 1996, Session 3268.

6. Alam, J., and J. J. Rencis, “Use of Internet in Information Content
Creation and Delivery for Promoting Active Cooperating Learning,” Pro-
ceedings, 1997 ASEE Annual Conference, ASEE, 1997, Session 2220.

7. Herrmann, E., Teach Yourself CGI Programming with PERL in a
Week, Sams Net, 1996.

8. Brenner, S., and E. Aoki, Introduction to CGI /Perl: Getting Started
with Web Scripts, IDG Books, 1995. (This book covers CGI scripting and
cgi-lib.pl.)

9. Lemay, L., Teach Yourself Web Publishing with HTML 4 in 14 Days,
Second Professional Reference Edition, Sams Net Publishing, 1997.

October 1999 Journal of Engineering Education 521

APPENDIX A: PROGRAM FILE: testrad.cgi

#!/usr/local/bin/perl
Filename: testrad.cgi
print ("content-Type: text /html\n\n");
print (",HEAD.,TITLE.Interactive W0000eb-Based Tests,/TITLE.,/HEAD.\n");
print(',BODY BGCOLOR="#FFF8DC".');

OPEN THE INPUT FILE CONTAINING THE TEST INFORMATION
$pass="$ENV{'PATH_INFO'}";$number="$ENV{'PATH_ TRANSLATED'}";
($file,$trash)=split(/ \ /number/,$number);
($passit,$trash)=split(/\ /number/,$pass);
$passit=~ s/^\///g;
open(MYFILE,"$file")|| print ",h3.Error: Can't open file.,/h3.";
$k=0;$ap=0;$qp=0;srand;while(,MYFILE.){
LOOK FOR COMMENTS AND IGNORE THEM
$in_line=$_;if($in_line =~/^\#/){ }else{
LOOK FOR THE TITLE AND PRINT IT
if($in_line =~ /^title:/){$in_line=~ s/title://g;
print (",h2.$in_line,/h2.");
print ",b.Instruction:,/b. Click on a radio button to choose the best item, as listed, for each of the following. Then, click the SUB-
MIT button.,br."}else{
LOOK FOR THE LOCATION OF DIRECTORY CONTAINING CGI FILES
if($in_line =~ /^loc:/){$in_line=~ s/loc://g;$loc=$in_line; chop($loc);}
LOOK FOR THE QUESTION
if($in_line =~ /^question:/){$in_line=~ s/question://g;$question=$in_line;}
LOOK FOR THE QUESTION PICTURE
if($in_line =~ /^qpicture:/){$in_line=~ s/qpicture://g;$qpic = $in_line;$qp=1;}
LOOK FOR THE ANSWERS
if($in_line =~ /^answer:/){$in_line=~ s/answer://g;$ans =$in_line;}
LOOK FOR THE ANSWER RELATED PICTURES
if($in_line =~ /^apicture:/){$in_line=~ s/apicture://g;$apic = $in_line;$ap =1;}
LOOK FOR THE TIPS (do nothing with them)
if($in_line =~ /^tip:/){$in_line=~ s/tip://g;$tip =$in_line;}
LOOK FOR THE EXPLANATION (do nothing with it)
if($in_line =~ /^explanation:/){$in_line=~
s/explanation://g;$explain=$in_line;}
if($in_line=~ /^\& /){
PRINT THE QUESTION AND PICTURE (IF ONE IS PROVIDED)
print (',FORM METHOD = "post" ACTION =",$loc,'/ ans1. cgi/',$passit,'".');
print ",hr. ,p.",$k+1,." ", $question," ,br. ,/p."; if($qp eq 1){print ',img src="',$qpic,'". ,br.,br.';}
PARSE THE ANSWERS AND PICTURES (IF PROVIDED)
@answer=split (/ ; / , $ans) ; foreach $i (0 .. $#answer) {
TAKE OUT THE 1 SIGN FROM THE CORRECT ANSWER
if ($answer[$i] =~ /^\+/){$answer[$i]=~ s/^\+//g;}}
if($ap eq 1){@apict=split(/;/,$apic);
print ",br.";}
RANDOMIZE THE ANSWER ORDER
$j=-1;$l=$#answer;$number=rand($l);$h=substr($number,0,2); while($j++ , $l){
PUT ANSWER OPTIONS IN THE RADIO-BUTTON MENU
if($ap eq 1){
print ' ,input Type="radio" NAME="',$k,'" value="',$answer[$h],'".
',',img src="',$apict[$h],'". & nbsp ';}
if($ap eq 0){
print ' ,input Type="radio" NAME="',$k,'" value="',$answer[$h],'". & nbsp ',$answer[$h],',br.';}
if($h le $l){ $h=$h+1};if($h gt $l){ $h=$h-$l-1};}$k++; $qp=0;$ap=0;}}}}
CREATE THE SUBMIT AND RESET BUTTONS
print (',hr.,br.,input type="submit" value="SUBMIT". ,input type="reset"
value="RESET".,hr.');
print (',input type="hidden" name=file value="',$file,'".');

522 Journal of Engineering Education October 1999

FINISH THE HTML DOCUMENT
print (",/body. \n");print (",/html. \n");

APPENDIX B: PROGRAM FILE: ans1.cgi

#!/usr/local/bin/perl
Filename: ans1.cgi
require "cgi-lib.pl"; &ReadParse(*input); chop($date = ̀ date`);
print ("content-Type: text/html\n\n");
print (",HEAD.,TITLE.Test Results,/TITLE.,/HEAD. \ n");
print (',BODY BGCOLOR="#FFF8DC".');
print (",h2.Comments and Test Score,/h2.");
$pass="$ENV{'PATH_INFO'}";$number="$ENV{'PATH_ TRANSLATED'}";
($file,$trash)=split(/ \ /number/,$number);
($passit,$trash)=split(/ \ /number/,$pass); $passit=~ s /^\ ///g;
OPEN THE INPUT FILE CONTAINING THE TEST INFORMATION
$ap=0;$qp=0;$total=0; $tpoints=0; $points=1; $k=0; srand;$noans=0;
open(MYFILE,"$file")|| print ",h3.Error:Can't open file.,/h3.";
while(,MYFILE.){$in_line=$_;if($in_line=~/^question/){$k++;}
if($in_line =~ /^loc:/){$in_line=~ s/loc://g;$loc=$in_line; chop($loc);}}
foreach $ii (0 .. $k-1){if($input{$ii} eq ""){$noans=1;}}
close(MYFILE);if($noans == 0){$k=0;
open(MYFILE,"$file")|| print ",h3.Error:Can't open file.,/h3.";
while(,MYFILE.){
LOOK FOR COMMENTS AND IGNORE THEM
$in_line=$_; if($in_line =~/^\#/){ }else{
LOOK FOR THE TITLE AND PRINT TIME OF SUBMITTAL
if($in_line =~ /^title:/){$in_line=~ s/title://g;
print (",h4.",$in_line,",/h4.");
($day,$mon,$mday,$tim,$tzone,$year)=split(' ',$date);
print ("Time of submittal of the test for grading: ",$tim,", ", $day,.",
",$mon," ",$mday,", ",$year,", ", $tzone," ,br.,br.");}else{
LOOK FOR THE QUESTION
if($in_line =~ /^question:/){$in_line=~ s/question://g; $question=$in_line;}
LOOK FOR THE QUESTION PICTURE
if($in_line =~ /^qpicture:/){ $in_line=~ s/qpicture://g; $qpic
=$in_line;$qp=1;}
LOOK FOR THE ANSWERS
if($in_line =~ /^answer:/){$in_line=~ s/answer://g;$ans =$in_line;}
LOOK FOR THE ANSWER RELATED PICTURES
if($in_line =~ /^apicture:/){
$in_line=~ s/apicture://g; $apic =$in_line; $ap =1;}
LOOK FOR THE TIPS (do nothing with them)
if($in_line =~ /^tip:/){ $in_line=~ s/tip://g; $tip =$in_line;}
LOOK FOR THE EXPLANATION (do nothing with it)
if($in_line =~ /^explanation:/){ $in_line=~
s/explanation://g;$explain=$in_line;}
LOOK FOR POINTS VALUE (do nothing with it)
if($in_line =~ /^points:/){$in_line=~ s/points://g; $points=$in_line;}
if($in_line =~ /^loc:/){$in_line=~ s/loc://g;$loc=$in_line; chop($loc);}
if($in_line=~ /^\& /){
PRINT THE QUESTION AND PICTURE (IF ONE IS PROVIDED)
print ",p.",$k+1,." & nbsp & nbsp", $question," ,br. ,/p.";if($qp eq 1){print ',img src="',$qpic,'". ,br.,br.';}
PARSE THE ANSWERS, TIPS, AND PICTURES (IF PROVIDED)
@answer=split (/ ; / , $ans) ; @tips=split (/ ; / , $tip) ;
foreach $i (0 .. $#answer){
TAKE OUT THE 1 SIGN FROM THE CORRECT ANSWER

October 1999 Journal of Engineering Education 523

524 Journal of Engineering Education October 1999

if ($answer[$i] =~ /^\+/){$correct=$answer[$i]; $correct=~ s/^\+//g;
$answer[$i]=$correct;}}if($ap eq 1){@apict=split(/;/,$apic);
PRINT THE ANSWERS, COMMENTS, AND TEST SCORE
} $answ=$input{$k}; foreach $l (0 . . $#answer)
{if("$answ" eq "$answer[$l]"){$ll=$l}}
if($ap eq 1){print ('You chose: ,img src="',$apict [$ll],'"
align=middle. ,br.');}
if($ap eq 0){print ("You chose: ",$answ,",br.");} if("$answ" eq "$correct"){
print ($tips[$ll]," Great! ,br. ,hr."); $total=$total+$poin-ts;}else{print ($tips[$ll]," Reconsider your choice.
,br.,hr.")}
$tpoints=$tpoints+$points;$k++;$points=1;$qp=0;$ap=0;}}}}
$score=$total*100/$tpoints; printf(",P.,FONT SIZE=+2.Score:
%3.1f ",$score);printf("\%% . ,/FONT.,/P.");}else{print ",h4. One or more of
the questions in this test have not yet been answered.,br.You have the
following two options:,p.,/h4. Click the Back button on the menu to return to
answer each not-yet-answered question.,p."; }srand;$number=rand(100);
$number=substr($number,0,2);print 'Click ,a
href=',$loc,'/testrad.cgi/',$passit,'/number=',
$number,'.here,/a. to take the test over. ,br.';if($noans == 0){print ' Click ,a href=',$loc,'/ans2.cgi/',$passit,'.here,/a. to see the
correct choices and explanations.';}
FINISH THE HTML DOCUMENT
print (",/body. \n");print (",/html. \n");

APPENDIX C: PROGRAM FILE: ans2.cgi

#!/usr/local /bin/perl
Filename: ans2.cgi
chop($date = ̀ date`);print ("content-Type: text/html\n\n");
print (",HEAD.,TITLE.Key to the Test,/TITLE.,/HEAD. \ n");
print (',BODY BGCOLOR="#FFF8DC".');
print (",h2.Correct Choices and Explanations,/h2.");
OPEN THE INPUT FILE CONTAINING THE TEST INFORMATION
$number="$ENV{'PATH_TRANSLATED'}";($file,$trash)=split(/\/number/,$number);
$ap=0;$qp=0;$total=0;$tpoints=0;$points=1;
open(MYFILE,"$file")|| print ",h3.Error:Can't open file.,/h3.";
$k=0;srand;while(,MYFILE.){
LOOK FOR COMMENTS AND IGNORE THEM
$in_line=$_;if($in_line =~/^\#/){ }else{
LOOK FOR THE TITLE
if($in_line =~ /^title:/){$in_line=~ s/title://g;
print (",h4.",$in_line,",/h4.");}else{
LOOK FOR THE QUESTION
if($in_line =~ /^question:/){$in_line=~ s/question://g;$question=$in_line;}
LOOK FOR THE QUESTION PICTURE
if($in_line =~ /^qpicture:/){$in_line=~ s/qpicture://g;$qpic = $in_line;$qp=1;}
LOOK FOR THE ANSWERS
if($in_line =~ /^answer:/){$in_line=~ s/answer://g;$ans =$in_line;}
LOOK FOR THE ANSWER RELATED PICTURES
if($in_line =~ /^apicture:/){$in_line=~ s/apicture://g;$apic = $in_line;$ap
=1;}
LOOK FOR THE TIPS (do nothing with them)
if($in_line =~ /^tip:/){$in_line=~ s/tip://g;$tip =$in_line;}
LOOK FOR THE EXPLANATION (do nothing with it)
if($in_line =~ /^explanation:/){$in_line=~s/explanation://g;$explain=$in_line;}
LOOK FOR POINTS VALUE (do nothing with it)
if($in_line =~ /^points:/){$in_line=~ s/points://g;$points= $in_line;}
if($in_line=~ /^\& /){
PRINT THE QUESTION AND PICTURE (IF ONE IS PROVIDED)

print ",p.",$k+1,.” ", $question," ,br. ,/p."; if($qp eq 1){
print ',img src="',$qpic,'". ,br.,br.';}
PARSE THE ANSWERS, TIPS, AND PICTURES (IF PROVIDED)
@answer=split (/ ; / , $ans) ; @tips=split (/ ; / , $tip) ; foreach $i (0 .. $#answer){
TAKE OUT THE 1 SIGN FROM THE CORRECT ANSWER
if ($answer[$i] =~ /^\+/){$ll=$i;$correct=$answer[$i];$correct=~ s/^\+//g;
$answer[$i]=$correct;}}if($ap eq 1){@apict=split(/;/,$apic);
PRINT THE ANSWERS
if($ap eq 1){print 'The correct choice is: ,img src="', $apict[$ll],'"
align=middle. ';}print ",br.,br.";}
if($ap eq 0){print ("The correct choice is: ",$correct," ,br.,br.");}
print ("Explanation: ",$explain,",br.,br. ,hr.");
$k++;$qp=0;$ap=0;}}}}
FINISH THE HTML DOCUMENT
print (",/body. \n");print (",/html. \n");

October 1999 Journal of Engineering Education 525

