JOURNAL OF THE
WESTERN SOCIETY ¢ ENGINEERS

\Fulume XXVI NOVEMBER, 1921 Hum'l:n:r i1

TECHNICAL PAPERS
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I. INTRODUCTION.

1. An Introeductory Discussion of the Standard Methods of Finding Deflec-
tions of Beams—Three methods are commonly used in determining deflections of
beams: The first is the purely analytical “double integration” method. The sec-
ond is the graphical “funicular polygon” method or “string polygon” method. The
third is the semi-geometrical “moment area” method. Each of these three methods
has a particular field where it is most useful. By the analytical double integration
method the equation of the elastic curve is determined ; namely, by integration of an
“equation of flexure” of the form d*y/dx*= + M /EI. 1f the equation of the elas-
tic curve (the deflected center-line) is the result called for, then it is natural, at
least in a number of cases, to apply this method, which leads to fairly simple solu-
tions when the load is of a simple nature. On the other hand, when the load is
more complex, then the method would in most cases require a rather elaborate deter-
mination of integration constants, and this feature is undesirable. For example, six
concentrated loads on a simple beam, dividing it into seven sectors, would require
the deteumination of fourteen integration constants. The analytical integration
method was used as early as 1744 by Euler,** and 1s important because, both logically

and historically, it 15 the fundamental method from which the others have been
derived.

The second method, that of the string polygon, was developed by O. Mohrt
who showed in 1868 that the deflected curve may be found as a string curve or string
polygon. ‘This graphical method is useful when the load is complex, consisting, for
example, of a large number of concentrated forces. A disadvantage of the method
1s that it gives results only in one specific case at the time. Moreover, the method

is limited to the degree of approximation which can be obtained by graphical con-
struction,

The third method, the moment area method, has appeared in more than one
form, and it has proved itself useful in a large variety of both simple and compli-
cated cases. It makes it possible to determine the deflection at one definite point
without first finding the equation of the whole elastic curve. At the same time the
method is well adapted for the purpose of determining formulas for the deflection at
any point, that is, of determining the equation of the elastic curve. The moment

10, Mohr, Beitrag ur Theorie der Holx und Elsenkonstruktlonen, Zeitsehrift des Architekten. und
Ingenieurvereines ru Hannover, 1868,

*Asplntant Professor of Theoretical and Applied Mechanics, University of Illinols.
.I“J;:":*l.er. Methodus inveniendi lineas eurvas, ete., Lausanne, 1744, see Additamentum “De curvis
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370 The Western Society of Engineers

area method was deduced in its first form by O. Mohr (1868)1f. When proving
the string polygon method, he recognized that when both the bending moments and
the deflections can be found by means of string polygons, then it would also be pos-
sible to determine deflections as if they were bending moments. Mohr showed how
the moment area principle derived in this way could be used with advantage in
finding the deflections of simple beams, and afterward he applied the results in an
analysis of continuous beams. At about the same time, or not much later, C. E.
Greene®, at the University of Michigan, discovered the moment area principle in a
distinctly different form. Greene's principle determines the deflections of a canti-
lever, or in general, the deflections of any beam, measured from any tangent to the
elastic curve, These deflections are found to be proportional to moments of areas
in the moment diagram. The basis of the proof is that the double integrals which
express deflections can be interpreted as proportional to such moments of moment
areas. Evidently, Mohr’s and Greene’s moment area principles are different. Each
has its field where it is most useful: for example, Mohr’s principle is preferable in
the case of simple beams, Greene's in the case of cantilevers.

Later Mueller-Breslau** extended Mohr’s original moment area principle in
sush a way that it became directly applicable to beams with any type of supports,
and dlso to trusses, The extended method, applied to beams, includes as special
cases both Mohr's and Greene’s original principles. One of its main features is the
use of an additional beam in which the bending moments are equal to or proportional
to the deflections of the given beam. This beam, introduced by Mueller-Breslau,
will here be called the “conjugate beam,” and, accordingly, we shall call the ex-
tended moment area method the “ conjugate beam method.”

The pages which follow will be devoted to a discussion of the “conjugate beam
method,” its derivation, and its use in finding deflections of statically determinate
beams and in the general analysis of statically indeterminate beams. In the treat-
ment of statically indeterminate beamns a method of selecting the conjugate beams
will be used which departs slightly from customary methods. In other respects it is
the plan to follow the usual way of presenting the subject.

The conjugate beam method requires an apparatus of investigation which is, of
course, slightly more complicated than, for example, that of Greene's original prin-
ciple. But when once established the operation of the extended method is in any
case as simple as that of Greene's principle, and, in addition, the extended method
has the advantage of a much wider rarige of direct applicability than the original
more limited principles. This will be shown on the pages which follow.

2. Definitions and Notation.—¥e shall speak about the given beam and about
the conjugate beam. The given beam is the beam of which the deflections are to be
determined. The conjugate beam is a fictitious beam which corresponds to the
given beam, and which is introduced for the purpose of analysis. It has the same
length as the given beam. It is defined as a beam which is supported and loaded in
such a way that its moment diagram becomes identical with the diagram of the
deflections of the given beam. Or, by definition, the deflections of the given beam
can be found as bending moments in the conjugate beam. Points on the two beams
having the same distance, say, from the left end, are considered as ‘‘correéponding”
or as “the same.”

tS3ee the paper just quoted. See also 0. Mohr, Abhandlungen sus dem Gebiete der technischen
Mechanik, '? od., 1014, pp. 342-374,

*According to J. E. Boyd, Strength of Materials, ed. 1917, p. 153, Greene began teaching the mo-
ment area method in 1872, o

**See H. Muecller-Breslau, Beitrag zur Theorig, des Fachwerks, Zeitackrift des Architekten vnd
Ingenieurvereines zu Hannover, v. 31, 1885, p. 418, also hiz “Graphische Statik,”" v. IL., 1, od. 1882,

ep. BR-120. .
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Deflection of Beams by the Conjugate Beam Method 371

The following notation will be used:

w=distributed load on the given beam, per unit length; w is considered posi-
tive downwards. _

}'=vertical shear in the given beam, equal to the sum of vertical forces to the
left of the section considered, with these forces considered positive
upwards.

.r‘lr‘f:hr:n&ing moment in the given beam; M is considered positive when caus-
ing compression at the top, tension at the bottom.

w’, I, and Af"=—load per unit length, shear,, and hendmg moment, rcspcctw-::h
in the conjugate beam ;*they are considered positive in the same direc-
tions as w, F', and M.

B=the slope of the elastic curve (that is, of the deflected center line), of the
given beais, 6 is considered positive clockwise.

y==deflection of the given beam, considered positive downwards,

x=horizontal distance, positive toward the right,

L=length of span.

El=modulus of elasticity times moment of inertia of cross-section.

3- The Six Diagrams Characterizing the Action of a Beam.—Fig. 1 shows a

simple beam which carries a distributed load w« given by the diagram shown at top.

o [P AT
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312 The Western Society of Engineers

The action of the beam may be characterized by the six diagrams shown in Fig. 1.
They are placed above one another, with common abscissas x. 'We shall consider

these diagrams in two separate groups with three in each:

In the first group the ordinates are:

w (=load), ¥ (=shear), and M (=bending moment), respectively.

In the second group the ordinates are:

M/EI, 8 (= slope), and y (== deflection), respectively.

Also in the case of any other type of beam,—cantilever, fixed, continuous, etc.,
—the action of the beam may be described by means of six diagrams of this kind.

In any case the following relations will exist between the diagrams:
In the first group:

M o 8V _ &M (1)
T dx ;0 dzr dz?
In the second group:
9y _M _do_dy (@)
dr ; EI dz dz*

The relation © = dy/dx is simply a statement that the slope is the derivative
of the deflection. The other relations occur in the usual theory of flexure. The
negative sign of —M/EJ in equation (2) is in accordance with the choice of the
positive direction of the deflections y (positive downwards).

The relations (1) and (2) between the diagrams may be interpreted graph-
ically or geometrically as follows:

(1) ‘The shear is the slope in the moment diagram. Minus the load per unit
length is the slope in the shear diagram. (2) The ordinate @ is the slope in the
y-diagram. Minus the ordinate M /ET is the slope in the 8-diagram.

‘The factor EI determines the relation between the diagrams of the first group
and the diagrams of the second group. The factor EI may be a constant, or it may
vary from point to point. Usually we shall assume El=—=constant, in which case
the ordinates in the M /EI-diagram are proportional to the ordinates of the M-dia-
gram, Then these two diagrams will be similar, or, with some particular choice of
scales, they will be identical.

4 The Moment Area Principle and the Load Diagram of the Conjugate
Beam.—By our definition of the conjugate beam its bending moments M’ are to be
equal to the deflections y of the given beam, that is,

M=y (3)
By a proper loading of a beam it will always be possible to make its bending moment
diagram take any given shape. The problem is then to find the particular load
diagram w’, and some particular method of support, which would cause the moments
in the conjugate beam to be equal to the deflections of the given beam, such as stated
in equation (3). We shall first determine the load diagram, w’. Equations (1)
serve this purpose. As they apply to any beam, we can make them apply to the con-
iug;te beam by substituting the valves w’, F’, and M’ for w, ¥V, and M. That is,
We nave:

M’ , dV' &M’
“d ; YTET 4)

S:Ihsgituting M’ =y in accordance with (3) and comparing with (2) we find the
colution :

"Frl'
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Deflection of Beams by the Conjugate Beam Method 3178

w=M/EI (5)

V'—=o (6)
These two relations combined with (3),

M=y (3)

express the moment area principle, which may now be stated as follows: The load
diagram of the distributed loads acting on the mujugaff beam is the same as the
M /El-diagram of the given beam. The slopes of the gmen beam are equal to the
shears of the conjugate beam. The deflections nf the given b:ﬂm are fqmzf to the
bending moments of the conjugate beam. The “moment areas!' in question are,
strictly speaking, not moment areas, but areas of the M /E/-diagram. It is these
areas which are acting as loads on the fictitious “conjugate beam.”

It remains for us to determine the character of the supports of the conjugate
beam.

5. The Supports and Qther Special Points of the Conjugate Beam.—Equa-
tion {5) gives complete information as to the forces acting on the conjugate beam on
any stretch within which there is continuity in the deflections and slopes of the given
beam. On the other hand, at special points, such as at the ends, or where the given
beam has a hinge, there may be, and will be, in general, a discontinuity in the appli-
cation of equations (2) and (4). Consequently, at such points there may be forces
acting, other than the distributed forces given by equation (5). There may be con-
centrated forces or couples. These forces or couples must counterbalance the dis-
tributed load of the M /E[-diagram, and might therefore be produced as reactions
supplied by the supports, provided these supports are placed properly. The sup-
ports of the conjugate beam may be different from those of the given beam. We
shall indicate rules by which the character of the conjugate beam, its supports, hinges,
etc., may be determined. In some cases there may be more than one solution, but in
such cases we shall choose the simplest possible type of conjugate beam.

The following rules may be indicated: At points where the deflections or the
slopes of the given beam have definite given values, the moments and the shears of
the conjugate beam must be made to assume those definite values. And especially,
at points where the deflection of the given beam is zero, the moment in the conjugate
beam must be made zero, and where the slope of the given beam is zero, the shear
in the conjugate beam must be made zero. This law leads to five specific rules for
the selection of supports of the conjugate beam, and for the placing of its hinges, free
ends, and’ other special points. Fig. 2 will illustrate the five cases, which are num-

[ - [
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bered in the figure in the order in which they will be discussed ; in each case a part
of the given beam is shown above in the figure, while the corresponding part of the
conjugate beam is shown directly below:

(1) A rigidly fixed end of the given beam (case (1), Fig. 2) is a point
where its deflection and slope are zero. At such a point the conjugate beam must
have zero bending moment and zero shear. This condition is established by letting
the conjugate beam have a free unsupported end at that point. We might, instead
of that, place a simple support at the point and then stipulate that the reaction at the
point must be zero; but the former solution appears to be the simpler one and will
be given the preference,

(z) A free end of the given beam, for example, of a cantilever, is a point
where both the deflection and the slope may be different from zero (case (2), Fig.
2). Correspondingly, it must be arranged that the bending moment and the shear
in the conjugate beam at that point may become different from zero. A fixed-end
support of the conjugate beam at that point is the simplest arrangement which will
cause an end moment and an end shear with the values which are necessary for
maintaining equilibrium.

(3) A simple support at the end of the given beam (case (3), Fig. 2) causes
the deflection at that point to be zero, but allows the slope to become different from
zero. ‘That is, in the conjugate beam the conditions at that point should cause the
nioment to be zero, Lut should provide for a shear which may be different from
zero. The simplest way of establishing such conditions is by letting the conjugate
beam end at the point and there have a simple support. The reaction from that
simple support is equal to the shear in the conjugate beam, and must therefore be
equal to the slope of the given beam.

(4) Next, consider a simple support not at the ends (case (4), Fig. 2). The
given beam is assumed to be continuous over that support. The deflection at the
point is zero. The slope may be different from zero, but must have the same value
immediately to the left and to the right of the point. ‘Therefore, in the conjugate
beam the moment at the point must ve zero, and the shear may have a value other
than zero, but must have the same value immediately to the left and to the right of
the point. An unsupported hinge in the conjugate -beam is the simplest arrange-
ment by which this condition can be established.

(5) A hinge in the original beam (see case (5), Fig. 2) is a point where the
two adjoining parts must have the same deflection but may have different slopes.
Hence the conjugate beam has the same moment immediately to the right and to
the left of the point, but may have different shears. This condition is established
when the Eﬂnjugate beam has a simple support at the point, furnishing a single-
force reaction only.

It is seen that Fig. 2 represents completely the five rules which have just been
indicated.

6. The Conjugate Beam in Some Definite Cases.—The five rules illustrated
in Fig. 2 will now be applied in a number of definite cases. Fig. 3 shows the appli-
cation to the important types of statically determinate beams. In each case the
given beam is shown above, the conjugate beam right below. In the case of the
cantilever in Fig. 3a, rule (1) applies to the left end, rule (2) to the right end.
Hence, the conjugate beam corresponding to a cantilever is a cantilever fixed at the
opposite end. 'We verify the result that the conjugate beam must be fixed or held
at the nght end, by noting that the beam must be free at the left end, and that :t
must be in equilibrium.

Fig. 3b shows a mmple beam. Rule (3) applif:s to both ends. The result is
that tl'l't conjugate beam is a simple beam, like the given beam. That the concen-

Yol. XXVI, Mo, 11



Deflection of Beami by the Conjugate Beam Method 370

trated forces acting at the ends of the conjugate beam can be found as reactions from
simple supports, follows from the fact that the conjugate beam must be in
.equilibrium.

Other cases of statically determinate beams are shown in Fig. 3¢, d, e, and f.
The application of the rules of Fig. 2 in each separate case is easily recognized. It
should Le noted that in all these cases of statically determinate beams the conjugate
beams are statically determinate. Because of this property it becomes unnecessary
to indicate the particular elastic properties of the various pieces of the conjugate
beam. It is enough to state that the individual pieces of the conjugate beams may
be considered as rigid bodies.

A certain reciprocity may be noted in Fig. 3; if the conjugate beam in any of
the cases were made the given beam, then the original given beam would become the
conjugate beam. In other words, in all these cases the given beam is the conjugate
beam of the conjugate beam. This l'l'.‘{:ipl'ﬂcit}i’ is found already in Fig. 2 where
rules (1) and (2) are reciprocal, likewise (4) and (5), while (3) may be consid-
ered as its nwn reciprocal. -

Fig. 4 shows three typical cases of statically indeter-
minate beams; that is, beams which have too many sup-
ports to allow the determination of the reactions and of
the shear and moment diagrams by means of the ordinary
statical conditions alone, without taking the elastic defor-
mations into account. In Fig. 4 the given beams are
shown above, The corresponding, conjugate beams, de-

VO rived in each case by the rules of ]% 2 are shown below.
The given beam in Fig. 4a is fixed at both ends. An ap-
" plication of rule (1) to both ends gives a conjugate beam

which 15 free at both ends.

This conjupgate beam is “incompletely supported” in

the sense that unless the load diagram has a special char-

: acter, the beam could not be in equilibrium. That is, the
Nety— load diagram, in this case the M /EI-diagram, must be ad-
justed, like the buoyancy forces on a floating body, in order
to establish equilibrium. It will be shown later that this
process of adjustment of the M /EI-diagram supplies the
remainder of the conditions which are needed in determ-
,.,QI ining the unknown reactions. - Or, the conditions of
equilibrium of the conjugate beam furnish a means of de-

termining not only the deflections of the given statically

indeterminate beam, but also its moments, shears, and re-

actions. Similar remarks may be made about the conju-

N gl gate beams in Fig, 44 and ¢, whlch are also “incompletelv
supported.” In Fig. 4b the given beam is fixed at the left

end, simply supported at the right end. An application

of rule (1) to the leit end, rule {3) to the right end,

leads to a conjugate beam which is simply supported at the

right end only. Egquilibrium is secured by a particular

of adjustment of the M/EI-diagram. In Fig. 4c the given

beam is continuous over three spans and has an over-

hanging end to the right. Rules (3), (4), and (2) apply

at the special points. Instead of using the unsupported

hinges in Fig. 4¢ one might place supports under them and

gt then stipulate that the reactions from those supports must

Fig. 4.
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be zero. However, we prefer here to indicate as “the conjugate beam” that which
15 shown in Fig. 4c and which has unsupported hinges.

7. Deflections Measured frem Other Lines than from the Original Unde-
flected Center Line—Assume that it is desired to measure the deflections of the
?implehbcal:n ddgﬂin Eigi é :
rom tine chor , whnere
and D are points of the H c , p B
beam, deflecting with the — - - e -
beam. The fundamental

equations (2) apply to the
deflections from CD. Fur- H
thermore, as far as the de- :

flections from CD are con- Fig. 5.

cerned, the beam may be

considered as simply supported on CD at points € and D). The actual reactions
at 4 and B may then be considered as external forces acting at the free ends of the
beam (any reaction may be considered as an applied external load). The corre-
sponding conjugate beam is shown below in Fig. 5. The load acting on the con-
jugate beam is the M /E[-diagram of the original beam, supported at A and B.

A similar example is illustrated in Fig. 6, where the deflections y are meas-

ured from the tangent at . After the actual bending moment at the fixed end 4

has been determined, this

bending moment is consid-

ered as an external couple.

! Then the beam may be an-

alyzed as if supported at C.

- The corresponding conju-

X B gate beam consists of two

hﬁ cantilevers, and is shown be-

low. In this way the de-

Aections of any beam from

any of its tangents may be

Fig. 6. found. That is, Greene’s

principle, determining the deflections from the tangent,-is covered as a special case
by this particular application of the principle of the conjugate beam.

[[. STATICALLY DETERMINATE REAMS.

8. (General Remarks.—Woe are now ready to apply the conjugate beam
method to a number of definite cases. We begin with a study of deflections of sta-
tically determinate beams. In the specific cases treated it will be assumed that un-
less otherwise stated, the stiffness factor EJ is a constant throughout the length of
the beam. Also, unless otherwise stated, the deflections and slopes will be meas-
ured relative to the undeflected center line of the beam.

g, Cantilevers—A cantilever of length L, fixed at the left end, will be con-
sidered. The conjugate beam was shown to be a cantilever fixed at the opposite
end,—such as indicated in Fig. 3a.

Vol. XXVI, No. 11



Deflection of Beams by the Conjugate Beam Method 377

A. Concentrated load at the end.
—The M/EI-diagram is a triangle, P
as shown in Fig. 7. The bending mo- L
ments are negative, 1hat is, the '
M /EI-load is a load upward on the
conjugate beam. The conjugate

beam, which is fixed at the right end, , | ﬂ/ﬂ'
is shown in Fig. 7, with the M /EI- /A

load acting on it. Since that load 'acts == ?

upwards, it gives positive moments f

and shears in the conjugate beam,

This result agrees with the fact that
the slopes and deflections of the given Fig. T.
beam must be positive (with the pre-
viously indicated notation, the deflections are p-asmvﬁ downward, and the slopes are_~
beam-eccur at the free end. The slope of the given beam at the free end is equal to
the shear at the fixed end of the conjugate beam, or equal to minus the area of the
M /EI-diagram, or

IPI*
fmaz = 5 &7 (7

‘The deflection at the right end of the original beam is the moment at the fixed end
of the conjugate beam. The resultant of the M/EI-load passes through the cen-
troid of the A /E[-diagram; that is, it has a moment arm equal to (2/3)L with
respect to the right end. The M /E[-load acts upwards, giving positive moments in
the conjugate beam ; or, positive deflections in the given beam. The maximum mo-
ment in the conjugate beam, equal to the right end deflection in the given beam,
1s then

1 PLY\ 2L\ PL} '
Ymazr = ( EI)( = SE] {3]‘

Slopes and deflections at other
points may be found in a similar
manner, and thus the complete
slope and deflection diagrams may
be obtained.

e B. Cantilever loaded by a con-

centrated force P at any point—

The notation for distances is piven

in Fig. 8, which shows the given

g" beam at top, and the conjugate

d"l. } beam, loaded with the M /EI-dia-

gram right below. The maxi-

mum slope, as in the preceding
y,.u; case, is equal to minus the area of
Yy the M/EI diagram, that is

Fig. &

1 Pa? .
fmaz= + 3BT (9)
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The moment at the fixed end of the conjugate beam, that is, the deflection at the
free end of the given beam, is

ymar—=+ E( -Ha) (10)

The shapes of the complete © and y-diagrams are shown below in Fig. 8.

w

C. Cantilever with load wuniformly
distributed —Fig. 9 shows the given beam
above, and the conjugate beam, loaded with
the M /EI-diagram, below. The parabolic
area of the M/EI-diagram has an average
ordinate equal to one-third of the greatest 2
ordinate. Its centroid is at a distance
(3/4)L from the right end. Hence we
find for the right end:

ryEl
2%

Fig. 5.
w2 w LA '
E"'"’_S(ﬂ'EI) L= gEr S
and
wldy 3 w4
w(3) 1= B o

10. Simple Beams.—A simple beam with span L will be considered. The

conjugate beam was shown to be a simple beam,—see Fig. 34. This is the par-
" ticular case in which the conjugate beam is the same as the gwen beam. Mohr's
original theory was applied to that case. The action under various types of load
will now be investigated.

P .

A. Simple beam, concentrated
load P at center—The M /El-dia-
gram is a triangle. It is shown in

Fig. 10 as a load acting on the conju-

5 gate beam. The maximum slope in
the given beam occurs at the left end.

It is equal to the left end shear in the

] conjugate beam. This left end shear

o is equal to the reaction, which, on ac-
count of the symmetry, is one-half the

area of the M/EI-diagram. Hence

the following expression for the max-

y v imum slope:

Fig. 18,

Vol. XXVI. No. 11



Deflection of Beams by the Conjugate Beam Method 379

L PL PL:
2 4EI =~  16EI (1)

Imaz —
The centroid of the left half of the E‘If,f'F-ir diagram is one-third of the span from
the left end ; hence the maximum moment in the conjugate beam, or the nnmmum
deflection of the given beam, is expressed as '

_ PI* L _ PL | i
gl 3 RE :
B. Simple beam, tuwo equal F
concentrated loads, symmetrically a a

blaced.—TI'ig, 11 pives the notation
and shows the trapezoidal M/EI-
diagram, which acts as a load on
the conjugate beam. The slupe at
the lef+ end and the deflection at
the center are determined as the
lert end reaction and as the mo-
ment at the center of the conju-

gate beam. The values are: Fig. 11.
Pa (L—a) Ia 3 z) i
Bmar=— JEEI ' ymEF_E.{;EI(SL —éﬂ- [:.L..i'_al
W
C. Semple beam wmiformiy [oaded
L (Fig. 12).—The momenr diagram is a
Ll parabola with the maximum ordinate
Lad M = (/8)eel®.  The end slope is
£ EJ one-half the area of the M /El-diagram,
thar 1s,

Fig. 12
PORSINE. . :
T 8 BET B - BREI (16)

The centreid of the leit half of the parabolic area 15 (5//6)L from the leit end,
that is, the moment in the conjugate beam at the center, or, the maximum deflection

of the given beam, is "

oo wld SE g wkt
Umes=oiB1 16 — 3RLEI - (17)

November, 1821
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D. S8imple beam, concentrated
load at any point.—Fig. 13 gives the
notation. The M/El-diagram is a
triangle with altitude Pab/(EIL).
_ Lk The horizontal distance of the cen-
b X 1Vl N #®% troid of the triangle, measured from

l the right end, s (£/3) (L 4 &);
”” . hence, the left end shear in the con-
.|I|||L I A i jugate beam, or the left end slope in
W the given beam, is
- (L*# ] ﬁum

Fig. 13
L Pob L+b  Pab (L+b)
A= 5 "EIL 3L _ _ 6EIL (18)

‘The moment in the conjugate beam or the deflection of the given beam at the dis-
tance x from the left end, when x is assumed less than 4, is then

— o - Pbz z\ =
Y= “_(EIL 2) 3

or

Pbz
y= s.m( a(L+b) — *’) (19)

To the right of the load the deflection may be found by replacing x in (19) by the
distance ' measured from the right end, and by interchanging @ and 4. Hence, to
the right of the load we have the deflection

g Pazx ‘
EEIL('!’ (Lta) — ) (20)
By substituting x = a in (19) the deflection under the load is found to be
__ Pa?h® .
YP= SETL (1)

%

When P is in the right half of the beam then the location of the maximum deflec-
tion 15 found by differentiation of (19). Thereby the distance from the left end to
the point of maximum deflection is found to be

1=+ (1/8)a(L+b) (22)

The point of maximum deflection could also be found, ptrh'aps more directly, as the
point of maximum moment in the conjugate beam, that is, as the point of zero
shear in the conjugate beam.
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E. Simple beam loaded by
couples at the ends of the span ’z ”
(Fig. 14).—The slopes at the ends n 8
of the span have a particular inter-
est;, The moments Ma and
Mg, which are applied at the

ends as_shnwn in Fi_g, 14, cause a ,V/E'f

trapezoidal M /E[-diagram. This

M /EI-trapezoid may be consid- I
ered as consisting of the two tri-
angles which are marked f and I1, E.

and which have their centroids
over the third-points of the span.
Triangle I acting as a load on the
coniugate beam is carried two-

b

Fig. 4.

thirds by the left support and one-third by the right support; triangle I7, in the
sarme way, one-third by the left support, two-thirds by the right support. The shears

in the conjugate beam, or the end sInrres of the given bearn, are then:
At the left end:

fa= EE I(EM A+M B) (23)
At the right end:
A= HE I(M A+2M a) ' (24)

F. Simple beam, any moment diagram.—Let
F be the arca of the moment diagram (Fig. 15).
Let the distance of its centroid from the left end

be x, from the right end . Then the end slopes,

fnund as end shears in the conjugate beam, are seen
to be:

Fig. 15.
At the left end:
ta=pE (25)
At the right end:
0 =— EFIEE (26)

11. Case in which the Cross Section of the Beam is not Constant.—A single
example will be sufficient in illustrating the use of the conjugate beam method in the
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case of a varying cross section.  'We shall take the case of a sunple beam carrving a
concentrated load P at the cen-
ter,—see Fig. 16. The moment
of inertia is assumed to be /, on
the middle half of the beam,
{o/2 on the outer gquarters
The moment diagram is a tri-
angle with altitude PL/4. Di-
viding the ardinates in the trian-
gular moment diagram by K/
within the middle halt of the
span, and by Ef /2 outside the
middle half, we obtain the
M /EI-diagram shown below in
Fig. 1h. This M/El-load can
he separated into the four tri-
angles I, I1, I1I, and IV, Com-
bining the reactions and bend-
ing moments produced by the
triangular loads 7 and 17 on the
one hand, /// and // on the
other hand, we find the follow-
ing expressions for the end shear and central moment in the conjugate beam; that
i3, for the end slope and central deflection of the given beam:

Fig. 1E.

.. S BL2 ~* 3PL y .l
~EiElL. Yme== o8 Fl. (27)

12, Dewm with Owverhanging
Fnde—The conjugate beam corre-
sponding to a beam with overhanging
ends was indicated in Fig. 30, As an
example illustraring rhe applicstion of
the conjupate beam method to beamns
of this and similar types we shall take
the case shown in Fig. 17. The load
consists of twn equal forces P oat the
Iree ends. The overhanging ends
have the samme length @. The conju-
gate beam s indicated below, The
AT/EI-diagram is a trapezoid with
alitude Pa/EL This diagram, acring as 2 load on the conjugate beam, causes at
the center of the middle span rhe following moment, which 1s equal to the deflection
of the given beam at the center:

Pal?
~ REI

Fig-. 17.

He— (28)

At the left hinge the shear, equal to the slope over the left support in the given
heam, is: ' ;

Pal

aRT (29)
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At the left end the shear in the conjugate beam, or the slope of the given beam, is
one-half the M /E[-area, that is,

Pa(L+a) (80)
2EI
The deflection at the left end, found as the moment in the conjugate beam, is:

ParlL Pao?
= 3EI T 3EI (81

b4 = —

III. STATICALLY INDETERMINATE BEAMS.

13. General Remarks—The following cases of statically indeterminate beams
were shown in Fig. 4: a beam fixed at both ends; a beam fixed at one end, simply
supported at the other; and a continuous beam./ The general definition is recalled:
beams are called statically indeterminate when, with given loads, it is not possible -
to determine the reactions, shears, and bending moments, without taking the de-
flections into consideration.

The problem involved may be separated into three parts. The first is to ascer-
tain the character of the reactions, and of the shear and bending moment diagrams.
The second is to determine the reactions and the moment diagrams quantitatively.
The third is to find the slopes and the deflections. The first part is solved by com-
paring the given statically indeterminate beam with a “substitute beam" which is
statically determinate, but which is made to deflect in the same way as the given
beam by introducing certain supplementary loads at special points. The second
part is solved conveniently by the conjugate beam method, by using such conjugate
beams as were indicated in Fig. 4. Dimensions of the moment diagram are then
determined by the condition that the conjugate beam must be in equilibrium. The
third part can be solved by the conjugate beam method ; when once the moment dia-
gram of the given beam is known, then the slopes and deflections may be determined
as shears and bending moments in the mn]ugfntc: beam, just as when the given beam
is statically determinate. Thus the conjugate beam method will serve the double
purpose of determining not only the deflections and slopes, but also the moments,
shears, and reactions,

The stifiness factor EJ will again be assumed constant throughout the length
of the beam, except when otherwise stated.

14. Beams Fixed at Both Ends.—Fig. 18a shows a single-spanned beam, fixed
- at both ends, and loaded in some general way. At each end there is a reaction
consisting of a force which is numerically equal to the end shear, plus a couple, which
is numerically equal to the bending moment at the end. The first step, according
to the plan just outlined is to indicate the “substitute beam.” The simple beam
shown in Fig. 186 will be used. It has the same dimensions as the given beam.
It carries the same loads throughout the length, except that at the ends the two
couples —M 4 and —M are applied as external loads, as are indicated in Fig. 185.
If it were not for the effect of these end couples, the deflections caused by down-
ward loads would be decidedly greater in the substitute beam than in the given beam.
We shall make the couples Ma -and Mg equal to the bending moments at the
ends of the given beam. The result is that when the reactions are considered as
included in the sets of acting forces and couples, then the complete sets of forces.
and couples acting on the two beams are identical. It follows that the two beams
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will have the same moment diagrams, and we may study the bending moments of
the given beam by studying those of the substitute beam.

Fig. 18¢c shows what we shall call the “moment diagram of the simple span,”
that is, the moment diagram caused in the substitute beam by the given loads alone,
when the end couples —M 4 ard —MB are not acting. When the loads are all
downward as in the figure, then these moments are all positive. ln that case the
end couples will have the directions indicated by the arrows in Fig. 186. Such end

a

Fig. 18,

couples, acting alone, produce negative bending moments. The diagram of these
moments is the trapezoid in Fig. 184. By superimposing the “end moment trape-
zoid” d on the “simple span moment diagram” ¢ the resultant moment diagram
which is shown cross-hatched in Fig. 18¢ is obtained. In Fig. 18f the same dia-
gram is shown, referred to a horizontal base.

We have now ascertained the character of the moment diagram, and we are
ready for the second step in the analysis: to determine the yet unknown dimensions
in the moment diagram, by using the conjugate beamn method. That is, we shall
determine the end moments Ma and Mb, or, in terms of graphics, complete the
diagram irr Fig. 18¢ by drawing the “closing line” ab in its correct position. The
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conjugate beam corresponding to a fixed-ended beam was indicated in Fig. 4a. It

is an unsupported beam. Its load diagram is found by dividing the ordinates of the
moment diagrams in Fig. 18e or f by the constant factor EI. This M/E[-diagram,
acting as a load, must hold the unsupported conjugate beam in equilibrium, Or,
the M /EI-diagram must hold itself in equilibrium. As the M /EI-diagram and the
moment diagram are similar, EI being constant, it follows that also the moment
diagram, considered as acting as a load on a free beam, must hold itself in equilib-
rium. Or, the diagrams in Fig. 18¢ and 4 must hold one another in equilibrium.
This condition is brought about when minus the area in Fig. 20d is equal to the
area in Fig. 20c, and when in addition the two areas have their centroids on the
same vertical line. Or, the end moment trapezoid has an area equal to but oppo-
site the moment area of the simple span, and the two areas have their centroids on
the same vertical line®.

The following notation is used:

F =— moment area of the simple span, that is area of the moment diagram which
the given load would produce in the simple beam having the same span.
(Fig. 18¢).

x = horizontal distance of the centroid of the area F from the left end.

x" = horizontal distance of the centroid of F from the right end.
M 4 — bending moment at the left end.
Mg = bending moment at the right end.

With this notation the condition that the two moment areas must be equal
but opposite is expressed:

—(L/2) (Ma+Ms) = F (52)

The condition that the two areas must have their centroids on a common vertical
leads to the result that the moment of the trapezoid in Fig. 184 about the right end
must be equal and opposite to the moment of the moment area of the simple span
about the same point, or

—(L*/6) (2Ma+4-MpB) = FY’ (33)
Taking moments about the left end we find in the same way
—(L*/6) (Ma+2Ms) = FX (34)

Any two of the equations (32), (33), and (34) determine the end moments
Ma and M.

When the load is symmetrical, then the end-moment trapezoid becomes a rect-
angle, and each end moment becomes equal to minus the average ordinate of the
simple span moment area, or

Mia= M= —F/L - (88)
Some of the important special cases will now be analyzed.

A, Uniformly Distributed Load. (Fig. 19).—The simple-span moment
diagram is a parabola with maximum ordinate M, = (1/8)wL?, and with total area
(2/3) M,L. Hence, by (35)

Ma= Mp= — (2/3)My = — (1/12)wl? (86)
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The positive moment at the center is then
Mc = (1/3)M, = (1/24)wl? (37)

It should be noted that these formulas apply only when the ends are ahsolutely
rigidly fixed. Actual end conditions rarely furnish more tham partial rigidity;
hence the coefficient r/z¢ in (37) must be used only with great caution, and in
most practical problems it should be replaced by some higher value, such as 1/r12.
We shall use the case to illustrare how the third step in the complete analysis
may pe performed : namely, the determination of the deflections. Twao solutions will
be indicated, in both of which the conjugate beam method will be used. In the first
solution the deflecrions of the given beam are found directly as bending moments

in the unsupported conjugate beam, The M/EI-load is shown below in Fig. 10.
Assume thar the object 1s to find

the maximum deflecton of the
given beam. It occurs at the cen-
ter and is egual to the bending mo-
ment in the conjugate beam at that
point. The M /ETI-lond to the lefr
of the center may be considered
as consisting of two parts: the
rectangle mnpg acting as an up-
ward load, combined with the par-
abolic arca mrg acting as a down-
ward load. These two areas have
the same size, wl3/(24ET). Their
centroids are ar the horizoneal dis-
tances L/¢ and 5L/16, respective-
ly, from the left end ; that is, their
omutual horizontal distance is L/16.  The couple formed by these two loads is eyual
to the moment in the conjugate beam at the center, that is, equal to the deflection
ymwaz Of the given beam at the center. This gives the computation

wkr L wL*
Ymar=oiBI 16 384Kl

Fig. 19,

(88)

‘T'his deflection is seen to be only one-fifth of that found for the carresponding simple
beam,—see formula (17).

The other method of determining the deflections is based on the principle that
the substitute beam (see Fig. 184) is made to deflect in the same way as the given
beam. Since the substitute beam is a simple beam, its conjugate beam is a simple
beam, Thus we may use a snnple beam as a “substitute conjugate beam.” This
procedure has the advantage that it allows us to separate the Af/El-load into twao
parts, each of which, acting alane, would not hold the unsupported conjugate beam
in equilibrium. As the one part we take the parabolic M /L[-area corresponding
ta the simple span, as the other the rectangle corresponding to the end moments
alone, The momnent at the center due to the simple-span parabolic ares was found
previously, It is the simple-span deflection derived in formula (17), equal to
(5/38¢ENwl?®  The rectangular diagram caused hy the end moments has an
altitude (—1/r2E])ewL? Tt represents a uniformly distributed load, and gives there-
forc a moment at the center equal to —(r/8) (1/12Ewl* Superposition of the
two mouments gives the tollowing computation of the resultant moment at the cen-
ter, equal to the deflection of the given beam,
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_ (5 _ 1, 1\wL'_ wL‘
”““—(334 8 12) ET ~ 384EI

which 1s the result expressed in formula (38).

B. Concentrated Load at Cen-
ter (Fig. 20.).—The simple-span
moment diagram is a triangle, with
altitude (r/4)PL. The average
ordinate is one-half the altitude:
hence the end moments are =

MAa = M= — (1/8)PL, (39)
and the moment at the center is

Mc = + (1/8)PL (40)
In the same way as in the preced-
ing case, by the use, for example,

B

75
-,

Fig. 20.
of the second scheme of computation, the central deflection is expressed:

48 8 8 192 EI

C. Concentrated Load at Any Point
(Fig. 21).—The load P is at the dis-
tances a from the left end, & from the
right end. The simple-span moment

diagram is a triangle with altitude
Pab/L, area F—Pab/2, and with the _ﬂ

center of gravity distances ¥—{(L-}a)/3 -nﬂ
from the left end, and x'=(L+4-4)/3

from the right end. By substituting

these values in the general equations

(33) and (34) these equations become Fig. 21,

| —(L*/6) [FMJ-FMB} = (Pab/2) - (L+4b)/3
1-—£L=fﬂ} (Ma+2MB) — (Pab/2) + (L4a)/3
Solving these equations we find

Ma = — Pabt/L? ; Ms = — Pa®/L* (42)
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15. Beams Fixed at One
End, Simply Supported at the
Other End.—The beam in Fig.
22a is fixed at the left end A,
simply supportgd at the right
end. Its load is of a general
type. In analyzing this case a
procedure may be followed
which 1s quite similar to that of
the preceding case, The simple
beum in Fig. 225 is introduced
as a substitute beam. The load
applied 1s that of the given
beam plus an end couple —Ma
acting as shown and equal to
the couple-component of the re-
action of the given beam at 4.
The result is that the two beams
will a-t alike. The moment dia-
gram f either beam can there-
fore Le found by superposition
of the following two component
parts, derived by consideration
of the substitute beam: the
simple-span moment area shown
in Fig. 22c; and the end mo-
ment diagram, here a triangle,
shown in Fig. 22d. The re-
sultant diagram is shown cross-

hatct ed in Fig. 22¢. The re-
.£ sultast moments are measured

there from the inclined closing
line. The same diagram, re-
ferred to a horizontal base, is
shown in Fig. 22f.

¥is. 2. A conjugate beam represent-
ing this case was indicated in Fig. 4b: it is free at the left end, simply supported at
the right end. It is incompletely supported, but it will be in equilibrium if the mo-
ment of the M /EI-diagram about the right end is zero. As E[ is constant, this con-
dition will be satisfied when the moment diagram itself considered as a load has a zero
moment about the right end. We denote again: JF=simple span moment area

x and ¥’ = center of gravity distances (see Fig. 22¢). By combining the moments
of the two component parts of the moment area (Fig. 22 ¢ and d) the condition
15 found

_ L(—Ma) 2L -
L .
Fx 3 3 =
or
Mai=-—-3Fx'/L* (43)
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This formula is the same as (33) | H IEENEREERERE B

vith Mo = 0.

Two definite cases will now be an-
alyzed.

A, Uniformly Distributed Load w.
(Fig. 23).—The maximum simple-span A
moment 15 M,= (1/8)wL?  Substi-
tuting in (43) F = (2/3)ML,
x' = L/2 we find for the end moment

Fig. 21.
Mi=—Mo=—(1/8)wl? (44)

The reaction, for example, at the fixed end, may be found as follows: It is
equal to the end shear, which is equal to the end slope in the resultant moment dia-
gram. This slope is found by combining the slope of the closing line with the end
slope in the simple-span moment diagram. The latter is the same as the end shear
in the simple span, or wl /2. The slope of the closing line is numerically wl /8.
A consideration of the diagram in Fig. 23 shows that the slopes must be combined
by adding their numerical values. Hence the values of the two reactions are

A=/8wL ,  B=(3/8)wL (45)

It follows that the pnint.uf the given beam where the shear is zero, is at the distance
(3/8)L from the right end. The maximum positive moment occurs at that point
and is found to be

Mmaz — + (9/128)wL? ' (48)

B. Concentrated Load at Center. (Fig.

24 ).— ' he maximum simple-span moment is
M, — (1/¢4)PL. Substituting in (43)

. F = (1/2)M,L, ¥ = L/2 we find the end

moment

Ma — — (8/4)My — — (3/16)PL 4

Then, from the shape of the diagram the maximum positive moment, occurring
under the load, is found to be

Mp = (6/8)M, = (6/32)PL (48)

As in the preceding case the reactions may be found by adding + Ma/L to the
simple span reactions. The values are then found:

A = (11/16)P \ — (5/16)P (49)
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16. Conttnuons Beams with Constant Crass Section and with Supports on
the Same Level.—Fig. 254 shows twao consecutive spans nf a continuous beam Ipaded
in some general way. EJ is constant. The supports are simple supports, The
supports and spans are numbered from the left end, and in that way the two spans
shown are the nth and (n4-1)2h. The beam system in Fig: 256 i3 introduced as
“substitute heam.'” It diffiers from the given beam by having hinges over the sup-
ports but otherwise it has the same dimensions as the given beam. It carries the
same loads as the given beamn, but in addition, each span is loaded by end couples,
such as the couples —Ma—, —Mn, and —Mn +; which are indicated in Fig. 252,
By choosing Mn -, Mr, and M+ equal to the bending moments in the given beam
over the corresponding supports the substitute beam is made to act like the given
bearn, and the two beains will then have identical deflections, bending moments, etc.

Fig. 25.

I the same way as in the preceding cases of statically indeterminate beams the re-
sultant moment diagram may be found by superimposing two separate diagrams: The
one consists of the simple span moment diagram shown m Fig. 25¢, that is, the mo-
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ment diagrams in the substitute beam caused by the original given loads only, without
the influence of the end couples. The other is the diagram in Fig. 254, which i is pro-
duced in the substitute beam by the end moments alone. It consists of a series of
trapezoids, of which the upper sides are connected into a polygon. The resultant
diagram is the cross-hatched area in Fig. 25¢. Fig. 25f shows this diagram re-
ferred to a horizontal base. In accordance with the usage which was introduced in
the preceding cases of statically indeterminate beams, the polygon pgr in Fig. 25d

is called the closing line.

The nature of the conjugate beam was indicated in Fig. 4¢. At the supports
over which there is continuity the conjugate beam has an unsupported hinge. This
conjugate beam is “incompletely supported.” But it will be in equilibrium pro-
vided the M /El-load satisfies certain special conditions, which may be stated as
follows: We replace the conjugate beam temporarily by a “substitute conjupgate
beam” of the folowing description: it carries the same M /EJl-load as the original
conjugate beam, and it has the same hinges; the only difference is that simple sup-
ports are brought up under the hinges which were unsupported in the original con-
jugate beam. Assume now that the M /El-load causes the reactions from all such
supports to be zero. In that case the substitute conjugate beam, with supported
hinge:s, and the original cﬂnjugate beam, with unsupported hinges, will act alike.
That is, an M/EI-load adjusted in such a way will hold the original conjugate
beam in equilibrium. The substitute l:ﬂnjugate beam is in fact a series of simple
beams. It may be interpreted as the conjugate beam corresponding to the sub-

stitute beam in Fig, 255.

EI was assumed constant. Hence, without disturbing the equilibrium, the
M /El-diagram can be replaced by the moment diagram itself, acting as a load.
This consideration leads to the following law, which 15 the equivalent of the orig-
inal conditions: the moment diagram acting as a load on the substitute conjupate
beam must cause the reactions of its intermediate supports to be zero. This law
will now be expressed in terms of equations, The notation 1s:

Ln = length of the nth span,

Fn = area of the simple-span moment diagram in the nth span (Fig. 27¢).

Xn = horizontal distance of the centroid of Fn from the left end of the nth
span.
X'n = horizontal distance of same point from the right end of the span.

Mn = moment in given beam over the nth support.

Indices n -+ 1 and n — 71 are used in the same way as n.

We shall especially consider the middle support in Fig. 25e. Its reaction may
be expressed as the sum of the reactions due to the separate loads in Fig. 254 and «.
The diagram in Fig. 254, acting alone as a load, would give the reaction

(Ln/6) (Mn-1+2Mn) + (Ln+1/6) (2Mn+Mn+1) (60)

In a similar way the reaction due to the moment diagram of the simple span in Fig.
25¢ i1s found to be .

anﬂern + Fn+1 X'n +1‘an +1 (51}

By puttlng the one of these reactions equal to but opposite the other the following
equation 15 found:

— Mo ~tLn—2Mn(Ln +Ln +1) — Mn +1La +1—6F nEn/Ln-+6Fn+1%'n +1/Ln+1 (62)

This equation gives a relation between the moments over three consecutive supports.
It is known as the theorem of three moments, By writing one such equation for
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each support over which the beamn is continuous, a number of equations 15 found,
equal to the number of unknown moments over such supports. The theorem of
three moments represents, therefore, a solution of the problem of continuous beams
over simple supports.

The reaction of the given beam, for example, at the middle support in I'ig. 23,
may be found as the increase of shear when passing from the left to the right of the
support. This increase is the same as the increase of slope in the moment diagram
f when passing the same point, It may be found as the sum of the corresponding
increases in the diagrams ¢ and 4. T'he increase of slope at the middle support in ¢
15 the same as the sinple-span reaction, that is, the reaction produced in the substi-
tute beam in Fig. 256 when the given load acts alone without the end couples shown
in that figure. To this reaction we add the increase of slope at the middle support
in the diagram 4. 5Since the ordinates of the diagram in Fig. 254 are negative, this
increase 15 positive in the particular case in Fig., 25, and the effect of the continuity
15 an increase of the middle reaction. In any case this increase may be expressed as

Ma +1—Mn Mi—Mn-1

G %
T T (65)

Some particular cases will now be treated.

A. Unifermly Distributed Loads—We assume the following uniformly dis-
tributed loads:
wn — load per unit length in span n, constant throughout the length of the

span,
Wn +, = S54Me In span rn-}- 1.

In that case we have: Frn = (2/3) (1/8) wl® = (1/12)wL} and ¥n=L./2,
and similar expressions for span n — 1. By substitution of these values the equa-
tion of three moments, (52), hecomes

—Ma—1La—2Mn(Ln+Ln41)—=Mn41ln41—(1/§)wnln®+—(1/4)wn + tlin 11 (64)

When the spans are equal, fin = La +3 = L, this eguation becomes
—Mnt1—4Ma—Ma+1—{1/4) (Wa+twn41)L7 . (64)

The equation (54) was
derived by Bertor in 1855
and was also indicated by
Clapeyron in 1857.* The
general form  (52)  was
derived by Bresse.**  The
three moment equation,
whether in the general or
special form, is often called
Clapeyron's equation.

B. One Concentrated
Furce in Fach Span—Fig.
26 illustrates the case and
gives the notation. The sim-
ple span moment area for
each span is a triangle, with
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dimensions defined as in Fig. 13. The following values are found:

Fa—(1/2)Pagnbn ; Xa=(1/8)(Ln+an) ;
Frtt=(1/2)Pn+1an+tbn+1 ; X'nit—{1/8)(Ln+1+bn+1)

Substitution of these values in the general equation (52) gives the three moment
equation

—Mn—an—'ﬂMn(Ln-E'Ln +!'}--—Mn +:!'Ln +i=
Pnﬂnbn{Ln+ﬂn} + Pn+1an -I-i'br}-i-l' {Lﬂ+f+bn -|:-:I'}
Ln L +1

(66)

C. Each Span Carries a Uniform Load and, in Addition, Several Concen-
trated Forces.—'This case is solved by superposition of solutions of equations (54)
and (56). By adding the right side expressions the following resultant three-
moment equation is found

—Mn—|Ln-—an [Ln+Ln+1]_Mn+1 Ln+1
o wnl.n? + i'n +1L=n+[+EPnﬂ-nbn {Lﬂ‘l"ﬂﬂ) EPn+1ﬂn+an+i{Ln+1+hu+1}

7 y In + Lo+t 67)

This three-moment equation 1s of a rather general form. The summations on the
right side may easily be replaced by integrals.

17. Continuous Beams Having Different Cross-Sections in Different Spans, But
With the Supports at the Same Level—-It is assumed that the cross-section is con-

stant throughout each span, but that it may vary from one span to another. We
denote :

In — moment of inertia of cross-section in nth span.

In 4= same in (n4r)th span.
The same procedure may be followed as when the cross-section is constant, except
that in the present case the M /E[-load can not be replaced by the moment diagram
itself as a load on the conjugate beam. A solution is found by transforming the
expressions (50) and (51), which represent the reactions due to M-loads, as fol-
lows: the parts of these reactions caused by the loads on the ath span are divided
by El., while the parts caused by the loads on the (n{-1)th span are divided by

EIn +,. Thereby {50) and (51) are changed into the following expressions rep-
resenting reactions_at the middle support in Fig. 25e:

an,"fﬁEIn} {Mﬂ-l‘F‘EMﬂ] + {Ln+[('JBEIn+1) {EMn"’"Mn-i-J [ES]
and

Fnin;"’.EInLn + Fn +|:frn+1,.-"IEIn+;|Ln+1 {59_]

Expressing these two reactions as equal and opposite we find the three-moment
equation

—Mn = \Ln/In—2Mn (Ln/In+Ln+1/In+;) —

EFHTH +3Fn +]Tjn +1 {ﬁﬂ}
Inlin In +1Ll'l +1

Ma +|Ll'l+1,-"lfl'l+]=

*Bertot, Comptes Rendus de la Bociett des Ingfnieurs Civils, 1855, p. 278, Clapeyron, Comptes
Rendus, v. 46, 1867, p. 1876,

"% 4 sonrding to A, Ostenfeld, Teknisk Elasticitetslmre, 3 od. 1918, p. 218,
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Equation (60) includes (52) as a special case: namely, that in which Ta=
In+1. When the load on the two spans consists of the uniformly distributed loads
wn and ws+;, then (60) takes the following special form, which corresponds
to (54), and includes (54) as a special case:

—Mn_+1Lann—EMn {Lu;’In+Ln +1,:"In +1} —

MnsiLnt1/ In 41— 0nln | W41 L% 4 (1)
imh/ Inh 4In + 410+ :

18. Continuous Beams with Supports Out of Level—The case is repre-
sented in Fig. 27a where three consecutive supports are shown with the deflections
Yn—1, Yn, 80d Yn+1. Such movements of the supports out of level would cause
stresses in the continuous beam even if no vertical loads were carried. 'We shall
assume that the deflections yn-~,, y¥n, and yn+, are definite quantities which are
known beforehand.
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Fig. 276 shows a substitute beam which has the following properties: its sup-
ports are displaced as those of the given beam; it has hinges over the supports; each
span is loaded by end couples, such as —Mn—;, —Mn, etc., where Mn="bending
moment in the original beam over the nth support; in other respects the two beams
are alike. Under these circumstances the beams a and & will deflect alike, and the
bending moments in both beams will be of the types shown in Fig. 27¢.

The conjugate beam with its loads is shown in Fig. 27f. The M /EI-load cor-
responds to the moment diagram in Fig. 27¢. The conjugate beam. has unsup-
ported hinges. Right at these hinges there must be bending moments equal to the
deflections yn—,, yn, and yn+, in Fig. 27a. These bending moments must there-
fore be transferred to the beam by pairs of external couples acting at the hinges as
indicated by the arrows in Fig. 27f. These loads must hold the conjugate beam in
equilibrium. Fig. 274 and ¢ show the end couples and the distributed M /EI-load
separately, acting on a substitute beam which has simply supported hinges. The
middle reaction in d is

Yn—1—1Yn + Yn+1—1Un (62)
Ln Lin +1

The reaction in Fig. 27¢ is the same as that already indicated by expression (58).
By expressing the reactions in d and ¢ as equal but opposite we find the following
three-moment equation, which represents the effect of the supports being out of
level : :

—Mn —1LHKIH—EMH (Lnffn"I-Ln -I-U’In.-H:I —
M..+1Ln+.,.ffn+l=aE( Yoor—yn  Ynhr—yn ) (63)

Ln Ln -+

The right side in this equation may be simplified by a particular choice of the line
from which the deflections are measured. In Fig. 28, 4B is the original undeflected
center line. But we shall now measure the deflections from the chord CD. Then
if we write yn—y = tn+1 = 0, y» = &a, the right side in (63) becomes

—8Edn (1/La+1/Ln+,) (64)

. Substituting this expression in (63), and combining with the effect of vertical loads,
as expressed by equation (60), we find the following general equation of three
moments:

—Mn—anlfrIn—EMn [:Ln‘,".rn+Ln +1fIn+1}—Mn+lLu+1l.J'rIn—|—1

6FnZn | 6Fn+1X 'n4y 1 1 (85)
= Pt T T BEdn [ —
InLn + In+1Ln+] " ( n+Ln -I-:|)

This equation takes into account both the ordinary bending effects, expressed by the
moment areas Fn and Fn+,, and the out-of-level eflect, defined by the distance §a
in Fig, 28.
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Fig. 18

When the cross-section is constant throughout the length of the two spans, as
expressed by I'n = In+; = I, then equation (65) takes the form:

—Mn—if.m —EMH (Ln'l‘Lﬂ'H} — MH +}Lﬂ+l

L EFI'I-TH EFI'I-"‘IIFI'I- +1‘—€EIEH (i +_£____)

o Ln + Ln-[-[ Lan  Ln +1

(66)

This is the general three-moment equation in case of constant cross-section.
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